1.1. Partial Derivatives+ Linear Approximation. Compute the partial derivatives of

$$
f(x, y)=x^{2}-y^{2}
$$

at the point $(1,1)$. Find the tangent plane to f at the point $(1,1,0)$ and use this information to estimate the value of $f(1.5,1.5)$.

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=2 x \\
& \frac{\partial f}{\partial y}=-2 y \\
& \left.\vec{n}\right|_{(x y y, f(x y))}=\langle 2 x,-2 y,-1\rangle \\
& \text { Looking at } x=1, y=1
\end{aligned}
$$

1.2. Limits. Show that

$$
f(x, y)=\frac{2 x y}{x^{2}+y^{2}}
$$

is not continuous by

- Finding the limit as t goes to zero along the lines $\langle t, t\rangle$ and $\langle t,-t\rangle$.

$$
\begin{aligned}
& f(t, t)=\frac{2 t^{2}}{t^{2}+t^{2}}=\frac{t^{2}}{t^{2}} \lim _{t \rightarrow 0} \leadsto 1 \\
& f(t,-t)=\frac{-2 t^{2}}{t^{2}+t^{2}}=-\frac{t^{2}}{t^{2}} \lim _{t \rightarrow 0} \leadsto-1
\end{aligned}
$$

- Making a contour plot with level sets $f=0, f=1$ and $f=-1$.

1.3. Partial Derivatives + Linear Approximation II. The total differential of f is given by

$$
d f=(2 x+y) d x+(x) d y
$$

Suppose that $f(0,1)=1$. Give the equation of the tangent plane at $(0,1,1)$, and estimate the value of $f(1,2)$.

$$
\begin{array}{r}
d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y \\
\frac{\partial f}{\partial x}=2 x+y \\
\frac{\partial f}{\partial y}=x
\end{array}
$$

$$
\begin{gathered}
\vec{n}_{(x, y, f(x, y)}=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y},-1\right\rangle \\
\vec{n}_{(0,1,1)}=\left.\langle 2 x+y, x,-1\rangle\right|_{\substack{x=0 \\
y=1}}=\langle 1,0,-1\rangle
\end{gathered}
$$

Eq f of plane is $\left.\vec{n} \cdot\left(\vec{V}-p_{0}\right)=0 \quad p_{0}=\in 0,1,1\right)$

$$
\begin{gathered}
\langle 1,0,-1\rangle \cdot(\langle x, y, z\rangle-(0,1,1)) \\
x-z+1=0
\end{gathered}
$$

$\operatorname{Linear}_{\text {appaximation }} \Rightarrow f(x, y) \approx z=x+1$.

$$
f(1,2) \approx 1+1=2
$$

