1. Derivatives of Multi-variable functions, I

1.1. Partial Derivatives+ Linear Approximation. Compute the partial derivatives of

$$
f(x, y)=x^{2}-y^{2}
$$

at the point $(1,1)$. Find the tangent plane to f at the point $(1,1,0)$ and use this information to estimate the value of $f(1.5,1.5)$.
1.2. Limits. Show that

$$
f(x, y)=\frac{2 x y}{x^{2}+y^{2}}
$$

is not continuous by

- Finding the limit as t goes to zero along the lines $\langle t, t\rangle$ and $\langle t,-t\rangle$.
- Making a contour plot with level sets $f=0, f=1$ and $f=-1$.
1.3. Partial Derivatives + Linear Approximation II. The total differential of f is given by

$$
d f=(2 x+y) d x+(x) d y .
$$

Suppose that $f(0,1)=1$. Give the equation of the tangent plane at $(0,1,1)$, and estimate the value of $f(1,2)$.

