Worksheet, Sep 13
0.1. Drawing Contour Plots. Draw a contour plot with steps at $z=0, z=-1$ and $z=-1$ of the function $f(x, y)=x y$. What is the general shape of the graph of $f(x, y) ?$
0.2. Interpreting Contour Plots. Determine the following information from the drawn contour plot:

- Mark the locations of minimum, maximum and saddle points for the drawn contour plot.
- Where on this contour plot is the function going to be the "steepest"?
- Approximate the partial derivative $\frac{\partial f}{\partial x}$ at the point $(1,0)$.

0.3. Review: Planes. Describe the graph of the function $f(x, y)=\sqrt{x^{2}+y^{2}}$. Draw a picture of the graph. Using your geometric intuition, guess what the tangent plane to the graph looks like at the point $\langle 1,0,1\rangle$. After you have used your drawing to guess what the tangent plane is, use partial derivatives to check your solution.
0.4. Continuity. Consider the function $f(x, y)=\frac{x+y}{\sqrt{x^{2}+y^{2}}}$. What does this function looks like when restricted to the plane $x+y=0$ and the plane $x-y=0$? Why does this show that f fails to be continuous as the origin?

