Worksheet, Sep 8

(1) A wooden stick is 10 meters long and 40 centimeters in diameter. A string wound around the stick in a spiral. The spiral winds around the stick 20 times (so the distance between each winding of the string is .5 meters.) How much string is used in the spiral?

Solution:Let's imagine that our stick goes "upward" in the z direction, and let's parameterize the string with a function $\vec{r}(t)$. Then the z-coordinate of $\vec{r}(t)$ should be continuously increasing, while the x and y coordinate should be tracing out a circle. So, we have that

$$
\vec{r}(t)=\langle a \cos t, a \sin t, b\rangle
$$

where a determines the radius, and b determines the rate at which this helix moves upward versus spiraling. The radius of the stick is $a=.4$, and the rate of winding is $b=\frac{.5}{2 \pi}$.
This gives us

$$
\begin{gathered}
\vec{r}(t)=\left\langle\frac{2}{5} \cos t, \frac{2}{5} \sin t, \frac{t}{4 \pi}\right\rangle \\
|\vec{r}(t)|=\sqrt{\left(\frac{-2}{5} \sin t\right)^{2}+\left(\frac{2}{5} \cos t\right)^{2}+\left(\frac{1}{4 \pi}\right)^{2}}=\sqrt{\frac{8}{25}+\frac{1}{16 \pi^{2}}}
\end{gathered}
$$

The length is given by

$$
\int_{0}^{40 \pi}|\vec{r}(t)| d t=40 \pi \sqrt{\frac{8}{25}+\frac{1}{16 \pi^{2}}}
$$

(2) Let $\langle x(t), y(t)\rangle$ be a parametric curve. Let L be the length of the curve from $t=0$ to $t=1$. Make a geometric argument for why

$$
L \geq|x(1)-x(0)|
$$

and prove this using the arc-length formula. When does this equality hold? (Draw pictures!)
Solution:A calculation shows

$$
\begin{aligned}
L & =\int_{t_{0}}^{t_{1}} \sqrt{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}} d t \\
& \geq \int_{t_{0}}^{t^{1}} \sqrt{\left(x^{\prime}\right)^{2}} d t \\
& \geq \int_{t^{0}}^{t_{1}} x^{\prime} d t \\
& =x(1)-x(0)
\end{aligned}
$$

(3) For which values of t is the curve given by $\left\langle 1-t^{3}, 1-t^{2}, 1+t\right\rangle$ parallel, skew, intersecting or tangent to the z axis?

Solution:First, the curve $\left\langle 1-t^{3}, 1-t^{2}, 1+t\right\rangle$ will intersect the z axis when both the x and y coordinate are zero; this only happens when $t=1$. The curve is parallel to the z axis when it's velocity is parallel to the z axis: the velocity is

$$
\left\langle 1-3 t^{2}, 1-2 t, 1\right\rangle
$$

So, we need $1-3 t^{2}=1-2 t=0$, which never occurs. So, the curve usually skew, except at $t=1$.

A linkage is a contraption made from steel bars and hinges. The steel bars are not allowed to change length. A single hinge is fixed at the point $(0,0)$, but all the other hinges are allowed to rotate freely and move. A single hinge is called the "input point", while another hinge is called the "output point." By pushing the location of the input point around with a parameteric equation $\vec{r}(t)$, we get a new parametric equation $\vec{s}(t)$ at the output point. For each linkage, figure out the output parametric equation for the corresponding input parametric equation.
(1) Let $\vec{r}(t)=\langle 5 \cos (t), 5 \sin (t)\rangle$.

(2) Let $\vec{r}(t)=\langle x(t), y(t)\rangle$. (Note: the line going from the origin labeled 2 and 2 is always straight in this example.) This linkage is historically called a Pantograph.

(3) Let $\vec{r}(t)=\langle 1+2 \cos \theta, \sin \theta\rangle$

