## Worksheet, Sep 8

(1) A wooden stick is 10 meters long and 40 centimeters in diameter. A string wound around the stick in a spiral. The spiral winds around the stick 20 times (so the distance between each winding of the string is .5 meters.) How much string is used in the spiral?
(2) Let $\langle x(t), y(t)\rangle$ be a parametric curve. Let $L$ be the length of the curve from $t=0$ to $t=1$. Make a geometric argument for why

$$
L \geq|x(1)-x(0)|
$$

and prove this using the arc-length formula. When does this equality hold? (Draw pictures!)
(3) For which values of $t$ is the curve given by $\left\langle 1-t^{3}, 1-t^{2}, 1+t\right\rangle$ parallel, skew, intersecting or tangent to the $z$ axis?

A linkage is a contraption made from steel bars and hinges. The steel bars are not allowed to change length. A single hinge is fixed at the point $(0,0)$, but all the other hinges are allowed to rotate freely and move. A single hinge is called the "input point", while another hinge is called the "output point." By pushing the location of the input point around with a parameteric equation $\vec{r}(t)$, we get a new parametric equation $\vec{s}(t)$ at the output point. For each linkage, figure out the output parametric equation for the corresponding input parametric equation.
(1) Let $\vec{r}(t)=\langle 5 \cos (t), 5 \sin (t)\rangle$.

(2) Let $\vec{r}(t)=\langle x(t), y(t)\rangle$. (Note: the line going from the origin labeled 2 and 2 is always straight in this example.) This linkage is historically called a Pantograph.

(3) Let $\vec{r}(t)=\langle 1+2 \cos \theta, \sin \theta\rangle$


