Worksheet, Sep 6
(1) Show that the curve

$$
\begin{aligned}
\vec{r}(t) & =\left\langle 1+t^{2}, 1+t^{2}, 1+t\right\rangle \\
& -2 x+3 y+z=1
\end{aligned}
$$

does not intersect the plane $P$
(2) Compute the function $d(t)$ describes the distance between the plane $P$ and the point $\vec{r}(t)$.
(3) Using single variable calculus, find the time $t_{0}$ which minimizes the function $d(t)$. Use this to find the point on the curve parameterized by $\vec{r}(t)$ which is closest to the plane.
(4) Compute $\vec{n}$, the normal vector to the plane. Compute the velocity vector $\vec{v}(t)=\frac{d \vec{r}}{d t}$.
(5) Geometrically explain why

$$
\vec{n} \cdot \vec{v}\left(t_{0}\right)=0
$$

and verify this identity.

