Mock Quiz, Sep 4
Name:
0.1. Cross Product. Compute the following Cross Products:

$$
\langle 1,2,1\rangle \times\langle 1,4,5\rangle \quad\langle 7,-1,3\rangle \times\langle-14,2,-6\rangle
$$

0.2. Lines and Planes. Find the equation of a plane which is parallel to the plane $2 x-2 y+z=2$ and is distance 6 away.
0.3. Projections. Show that $\operatorname{Comp}_{\vec{u}}(\vec{v} \times \vec{u})=0$. (Please include both a geometric explanation, and a computation on two vectors $\vec{v}=\left\langle v_{x}, v_{y}, v_{z}\right\rangle$ and $\vec{u}=\left\langle u_{x}, u_{y}, u_{z}\right\rangle$ confirming your geometric explanation.

Bonus Problem. Worth no points! Let $F_{1}, \ldots F_{k}$ describe the faces of a polyhedron. Let $\vec{N}_{1}, \ldots \vec{N}_{k}$ be the outward pointing normal vectors to these faces, with $\left|\vec{N}_{i}\right|=\operatorname{Area}\left(F_{i}\right)$. Prove that for any vector \vec{b}, we have

$$
\vec{b} \cdot \vec{N}_{1}+\vec{b} \cdot \vec{N}_{2}+\cdots+\vec{b} \cdot \vec{N}_{k}=0
$$

