WORKSHEET, SEP 1

0.1. Lines and Planes.

(1) Let ℓ defined by

$$x = t + 1$$
$$y = -1$$
$$z = -t$$

Find a new line ℓ_1 which Contains the origin and is perpendicular to our original line ℓ . **Solution:**The vector from the origin to the point $\ell(t)$ is simply $\langle t + 1, -1, -t \rangle$. We want to know when this is perpendicular to the direction that ℓ travels in, which is $\langle 1, 0, -1 \rangle$. So we want to find the value of t solving

$$0 = \langle t+1, 2t-1, -t \rangle \cdot \langle 1, 0, -1 \rangle = t + 1 + 4t - 2 +$$

which is when $t = \frac{1}{2}$. So the direction that the line travels in is

$$\ell(1/6) = (3/2, -1, -1/2)$$

We can scale this direction to something easier to look at, so the direction the new line travels in is $\vec{v} = \langle 3, -2, -1 \rangle$.

Solution:Let $\vec{v} = \langle 1, 0, 1- \rangle$ be the direction that the line travels in. Let \vec{p} be a point on the line. Then $\vec{n} = \vec{v} \times \vec{p}$ the normal to the plane that contains both the line ℓ and the origin. Notice now that the line perpendicular to ℓ and the origin is contained in this plane, so the direction of this line must be $\vec{n} \times \vec{v}$.

- (2) Let P_1, P_2 and P_3 be three planes. Suppose that P_1, P_2, P_3 all contain a common line. Show that the respective normal vectors \hat{n}_1, \hat{n}_2 , and \hat{n}_3 to these planes all lie in the same plane. Solution:Let \vec{v} be the direction of the common line. Then $\vec{n}_1 \cdot \vec{v} = \vec{n}_2 \cdot \vec{v} = \vec{n}_3 \cdot \vec{v} = 0$. Therefore, they are contained in the normal plane to \vec{v} .
- (3) Describe an algorithm which finds the minimal distance between 2 lines (which does not involve taking a derivative!)

Solution:Let the first line be given by $t\vec{v}_1 + p_1$, and the second by $t\vec{v}_2 + p_2$. Then the shortest distance between these two lines is a line which is perpendicular to both of them. Let $\vec{n} = \vec{v}_2 \times \vec{v}_3$ be a vector perpendicular to both ℓ_1 and ℓ_2 . Then take any vector \vec{w} with ends on ℓ_1 and ℓ_2 , and take the component comp_ $\vec{n}\vec{w}$.

0.2. Parametric Functions.

(1) Show that the curve

ane $\vec{r}(t) = \langle 1+t^2, 1+t^2, 1+t\rangle$ -2x+3y+z = 1.

(2) Find
$$\vec{r}(t)$$
, the parametric equation for the circle centered at the origin with radius 1, and $\vec{s}(t)$ the parametric equation for the circle centered at $(1,0)$. Find the points of intersection (if any) between these two curves.

(3) Two gears of radius 1 are placed side by side, with the first gear centered at the origin. A point p is marked on the boundary of the second gear. What is the parametric equation describing the path of the point as we rotate the second gear around the first gear?

