0.1. Lines and Planes.

(1) Let ℓ defined by

$$
\begin{aligned}
& x=t+1 \\
& y=-1 \\
& z=-t
\end{aligned}
$$

Find a new line ℓ_{1} which Contains the origin and is perpendicular to our original line ℓ.
Solution:The vector from the origin to the point $\ell(t)$ is simply $\langle t+1,-1,-t\rangle$. We want to know when this is perpendicular to the direction that ℓ travels in, which is $\langle 1,0,-1\rangle$. So we want to find the value of t solving

$$
0=\langle t+1,2 t-1,-t\rangle \cdot\langle 1,0,-1\rangle=t+1+4 t-2+
$$

which is when $t=\frac{1}{2}$. So the direction that the line travels in is

$$
\ell(1 / 6)=(3 / 2,-1,-1 / 2)
$$

We can scale this direction to something easier to look at, so the direction the new line travels in is $\vec{v}=\langle 3,-2,-1\rangle$.

Solution:Let $\vec{v}=\langle 1,0,1-\rangle$ be the direction that the line travels in. Let \vec{p} be a point on the line. Then $\vec{n}=\vec{v} \times \vec{p}$ the normal to the plane that contains both the line ℓ and the origin. Notice now that the line perpendicular to ℓ and the origin is contained in this plane, so the direction of this line must be $\vec{n} \times \vec{v}$.
(2) Let P_{1}, P_{2} and P_{3} be three planes. Suppose that P_{1}, P_{2}, P_{3} all contain a common line. Show that the respective normal vectors \hat{n}_{1}, \hat{n}_{2}, and \hat{n}_{3} to these planes all lie in the same plane. Solution:Let \vec{v} be the direction of the common line. Then $\vec{n}_{1} \cdot \vec{v}=\vec{n}_{2} \cdot \vec{v}=\vec{n}_{3} \cdot \vec{v}=0$. Therefore, they are contained in the normal plane to \vec{v}.
(3) Describe an algorithem which finds the minimal distance between 2 lines (which does not involve taking a derivative!)
Solution:Let the first line be given by $t \vec{v}_{1}+p_{1}$, and the second by $t \vec{v}_{2}+p_{2}$. Then the shortest distance between these two lines is a line which is perpendicular to both of them. Let $\vec{n}=\vec{v}_{2} \times \vec{v}_{3}$ be a vector perpendicular to both ℓ_{1} and ℓ_{2}. Then take any vector \vec{w} with ends on ℓ_{1} and ℓ_{2}, and take the component $\operatorname{comp}_{\vec{n}} \vec{w}$.

0.2. Parametric Functions.

(1) Show that the curve
does not intersect the plane

$$
\begin{aligned}
\vec{r}(t) & =\left\langle 1+t^{2}, 1+t^{2}, 1+t\right\rangle \\
& -2 x+3 y+z=1
\end{aligned}
$$

(2) Find $\vec{r}(t)$, the parametric equation for the circle centered at the origin with radius 1 , and $\vec{s}(t)$ the parametric equation for the circle centered at (1, 0). Find the points of intersection (if any) between these two curves.
(3) Two gears of radius 1 are placed side by side, with the first gear centered at the origin. A point p is marked on the boundary of the second gear. What is the parametric equation describing the path of the point as we rotate the second gear around the first gear?

