Worksheet, SEp 1

0.1. Lines and Planes.

(1) Let ℓ defined by

$$
\begin{aligned}
& x=t+1 \\
& y=-1 \\
& z=-t
\end{aligned}
$$

Find a new line ℓ_{1} which Contains the origin and is perpendicular to our original line ℓ.
(2) Let P_{1}, P_{2} and P_{3} be three planes. Suppose that P_{1}, P_{2}, P_{3} all contain a common line. Show that the respective normal vectors \hat{n}_{1}, \hat{n}_{2}, and \hat{n}_{3} to these planes all lie in the same plane.
(3) (Harder!) Describe an algorithm which finds the minimal distance between 2 lines (which does not involve taking a derivative!) Hint: Set up the first line as $t \vec{v}_{1}+p_{1}$ and the second as $s \vec{v}_{2}+p_{2}$. Also, try drawing a picture.

0.2. Parametric Functions.

(1) Show that the curve
does not intersect the plane

$$
\begin{aligned}
\vec{r}(t) & =\left\langle 1+t^{2}, 1+t^{2}, 1+t\right\rangle \\
& -2 x+3 y+z=1
\end{aligned}
$$

(2) Find $\vec{r}(t)$, the parametric equation for the circle centered at the origin with radius 1 , and $\vec{s}(t)$ the parametric equation for the circle centered at (1, 0). Find the points of intersection (if any) between these two curves.
(3) Two gears of radius 1 are placed side by side, with the first gear centered at the origin. A point p is marked on the boundary of the second gear. What is the parametric equation describing the path of the point as we rotate the second gear around the first gear?

