Tetrahedra Notes

Let's look at this tetrahedra problem. First, some notation. I'm going to call the four corners of the tetrahedra $\vec{p}_{0}, \vec{p}_{1}, \vec{p}_{2}$ and \vec{p}_{3}. We'll label the edges of this tetrahedra with the vectors \vec{e}_{12}, which is suppose to be an edge from p_{1} to p_{2}. Similarly, when I write \vec{v}_{123}, I'll mean the normal vector to the face containing vertices \vec{p}_{1}, \vec{p}_{2}, and \vec{p}_{3} whose magnitude is the area of the face.
The problem asks us to show that

$$
\vec{v}_{012}+\vec{v}_{123}+\vec{v}_{230}+\vec{v}_{301}=0
$$

We can write each of the face vectors in term of the edge vectors by taking a cross product of edges perpendicular to that face. I'm going to take a very particular set of vectors to write out these edges:

$$
\begin{aligned}
\vec{v}_{012} & =\frac{1}{2}\left(\vec{e}_{21} \times \vec{e}_{20}\right)=\frac{1}{2}\left(\vec{e}_{12} \times \vec{e}_{02}\right) \\
\vec{v}_{123} & =\frac{1}{2}\left(\vec{e}_{12} \times \vec{e}_{13}\right) \\
\vec{v}_{230} & =\frac{1}{2}\left(\vec{e}_{03} \times \vec{e}_{02}\right) \\
\vec{v}_{301} & =\frac{1}{2}\left(\vec{e}_{30} \times \vec{e}_{31}\right)=\frac{1}{2}\left(\vec{e}_{03} \times \vec{e}_{13}\right)
\end{aligned}
$$

Using these representations of the normal vectors, our previous computation expands to

$$
\begin{aligned}
\vec{v}_{012}+\vec{v}_{123}+\vec{v}_{230}+\vec{v}_{301} & =\frac{1}{2}\left(\vec{e}_{12} \times \vec{e}_{02}+\vec{e}_{12} \times \vec{e}_{13}+\vec{e}_{03} \times \vec{e}_{02}+\vec{e}_{03} \times \vec{e}_{13}\right) \\
& =\frac{1}{2}\left(\left(\vec{e}_{12}+\vec{e}_{03}\right) \times\left(\vec{e}_{02}+\vec{e}_{13}\right)\right)
\end{aligned}
$$

We've now reduced this to showing that $\left(\vec{e}_{12}+\vec{e}_{03}\right)$ and $\left(\vec{e}_{02}+\vec{e}_{13}\right)$ are parallel. This follows as

$$
\begin{aligned}
& \left(\vec{e}_{12}+\vec{e}_{03}\right)=\vec{p}_{2}-\vec{p}_{1}+\vec{p}_{3}-\vec{p}_{0} \\
& \left(\vec{e}_{02}+\vec{e}_{13}\right)=\vec{p}_{0}-\vec{p}_{1}+\vec{p}_{3}-\vec{p}_{1} .
\end{aligned}
$$

