Discussion Worksheet, Aug 28

0.1. Computing a Cross Product. Find a vector which is mutually orthogonal to $\langle 1,0,1\rangle$ and $\langle 0,1,2\rangle$.

Solution:This is taking a cross product of the two vectors

$$
\begin{aligned}
\langle 1,0,1\rangle \cdot\langle 0,1,2\rangle & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & 0 & 1 \\
0 & 1 & 2
\end{array}\right| \\
& =\left|\begin{array}{ll}
0 & 1 \\
1 & 2
\end{array}\right| \hat{i}-\left|\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right| \hat{j}+\left|\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right| \hat{k} \\
& =-\hat{i}-2 \hat{j}+\hat{k} \\
& =\langle-1,-2,1\rangle
\end{aligned}
$$

A quick check with the dot product confirms that this is mutually orthogonal to the two desired vectors.
0.2. Volume of a parallelepiped. Find the volume of the parallelepiped whose edges are given by the vectors $\langle 0,1,2\rangle$ and $\langle-1,-2,1\rangle,\langle 1,0,1\rangle$

Solution: We can use the triple product formula to get the volume of a parallelepiped, by taking

$$
\langle-1,1,1\rangle \cdot(\langle 1,0,1\rangle \cdot\langle 0,1,2\rangle) .
$$

We've previously computed the cross product on the right, so this simplifies to

$$
\langle-1,1,1\rangle \cdot\langle 0,1,2\rangle
$$

which is $-1 \cdot(0)+(-2) \cdot 1+1 \cdot 2=0$.
0.3. Triple Products. Show (by computation) that

$$
\vec{u} \cdot(\vec{v} \times \vec{w})=\vec{v} \cdot(\vec{w} \times \vec{u}),
$$

and explain why this geometrically makes sense.
Solution:Both sides are computing the volume of the same parallelepiped, so they should have the same solution. We can check this by writing out in components

$$
\begin{gathered}
\vec{u}=\left\langle u_{x}, u_{y}, u_{z}\right\rangle \\
\vec{v}=\left\langle v_{x}, v_{y}, v_{z}\right\rangle \\
\vec{w}=\left\langle w_{x}, w_{y}, w_{z}\right\rangle
\end{gathered}
$$

then computing

$$
\vec{u} \cdot(\vec{v} \times \vec{w})=\left\langle u_{x}, u_{y}, u_{z}\right\rangle \cdot\left(\left\langle v_{x}, v_{y}, v_{z}\right\rangle \times\left\langle w_{x}, w_{y}, w_{z}\right\rangle\right)
$$

and checking that it is equal to

$$
\vec{v} \cdot(\vec{w} \times \vec{u})=\left(\left\langle v_{x}, v_{y}, v_{z}\right\rangle \cdot\left(\left\langle w_{x}, w_{y}, w_{z}\right\rangle \times\left\langle u_{x}, u_{y}, u_{z}\right\rangle\right)\right.
$$

0.4. Concept Check. Why is $|\vec{u} \cdot(\vec{v} \times \vec{w})| \leq|\vec{u}||\vec{v}||\vec{w}|$?

Solution:Think about how we can express the magnitude of the dot product or cross product by using $\sin \theta$ and $\cos \theta$, and about how large these functions can be.

