0.1. Right angles and Dot Products. Suppose that \vec{v}, \vec{u}, and \vec{w} make three edges of a triangle. Suppose we have the identity

$$
|\vec{v}|^{2}=|\vec{u}|^{2}+|\vec{w}|^{2} .
$$

Show that if this identity holds, then $\vec{u} \cdot \vec{w}=0$, and the triangle must be right.
Solution:Since these three vectors form a triangle, we have the identity

$$
\vec{v}=\vec{u}+\vec{w}
$$

and we may compute

$$
\begin{aligned}
|\vec{v}|^{2} & =\vec{v} \cdot \vec{v} \\
& =(\vec{u}+\vec{w}) \cdot(\vec{u}+\vec{w}) \\
& =\vec{u} \cdot \vec{u}+2 \vec{u} \cdot \vec{w}+\vec{w} \cdot \vec{w} \\
& =|\vec{u}|^{2}+2 \vec{u} \cdot \vec{w}+|\vec{w}|^{2}
\end{aligned}
$$

Since we've assumed that $|\vec{v}|^{2}=|\vec{u}|^{2}+|\vec{w}|^{2}$, we can conclude that $2 \vec{u} \cdot \vec{w}=0$.
0.2. Component of vectors. Find a unit vector that points in the same direction as

$$
\langle 1,3,1\rangle
$$

Find the component of the vector $\langle 2,1,1\rangle$ onto this vector.
Solution:For the first part, we know that the unit vector that points in the \vec{v} direction is $\vec{v} /|\vec{v}|$. In this case we have the vector

$$
\frac{1}{\sqrt{1^{2}+3^{2}+1^{2}}}\langle 1,3,1,\rangle=\left\langle\frac{1}{\sqrt{11}}, \frac{3}{\sqrt{11}}, \frac{1}{\sqrt{11}}\right\rangle
$$

The component of \vec{u} onto \vec{v} is given by

$$
\operatorname{Comp}_{\vec{v}} \vec{u}=\frac{\vec{v} \cdot \vec{u}}{|\vec{v}|}=\frac{2 \cdot 1+1 \cdot 3+1 \cdot 1}{\sqrt{11}}=\frac{6}{\sqrt{11}}
$$

0.3. Angles II (Hard!) Prove the identity

$$
\cos \left(\theta_{1}+\theta_{2}\right)=\cos \left(\theta_{1}\right) \cos \left(\theta_{2}\right)-\sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right)
$$

by using the dot product formula for angles and the following setup of vectors.

Solution: We use both the formula for sin and cosine from determinant and dot product respectively. Let's call the vectors (from bottom to top) $\vec{a}, \vec{b}, \vec{c}$, and assume that they are unit length. Then we have

$$
\begin{aligned}
\sin \theta_{1} & =\operatorname{det}(\vec{a}, \vec{b}) \\
\sin \theta_{2} & =\operatorname{det}(\vec{b}, \vec{c}) \\
\cos \theta_{1} & =\vec{a} \cdot \vec{b} \\
\cos \theta_{2} & =\vec{b} \cdot \vec{c} \\
\cos \left(\theta_{1}+\theta_{2}\right) & =\vec{a} \cdot \vec{c}
\end{aligned}
$$

Then we compute

$$
\begin{aligned}
(\vec{a} \cdot \vec{b})(\vec{b} \cdot \vec{c})-\operatorname{det}(\vec{a}, \vec{b}) \operatorname{det}(\vec{b}, \vec{c})= & \left(a_{x} b_{x}+a_{y} b_{y}\right)\left(b_{x} c_{x}+b_{y} c_{y}\right)-\left(a_{x} b_{y}-a_{y} b_{x}\right)\left(b_{x} c_{y}-b_{y} c_{x}\right) \\
= & \left(a_{x} b_{x} b_{y} c_{y}+a_{y} b_{y} b_{x} c_{x}+a_{x} b_{x} b_{x} c_{x}+a_{y} b_{y} b_{y} c_{y}\right) \\
& -\left(a_{x} b_{x} b_{y} c_{y}-a_{x} b_{y} b_{y} c_{x}-a_{y} b_{x} b_{x} c_{y}+a_{y} b_{x} b_{y} c_{x}\right)
\end{aligned}
$$

Some terms cancel

$$
\begin{aligned}
& =\left(a_{x} b_{x} b_{x} c_{x}+a_{y} b_{y} b_{y} c_{y}+a_{x} b_{y} b_{y} c_{x}+a_{y} b_{x} b_{x} c_{y}\right) \\
& =a_{x} c_{x}\left(b_{x} b_{x}+b_{y} b_{y}\right)+a_{y} c_{y}\left(b_{x} b_{x}+b_{y} b_{y}\right) \\
& =\left(a_{x} c_{x}+a_{y} c_{y}\right)|\vec{b}| \\
& =\vec{a} \cdot \vec{c} \\
& =\cos \left(\theta_{1}+\theta_{2}\right)
\end{aligned}
$$

