Discussion Worksheet, Aug 25
0.1. Right angles and Dot Products. Suppose that \vec{v}, \vec{u}, and \vec{w} make three edges of a triangle. Show that whenever the sides satisfy

$$
|\vec{v}|^{2}=|\vec{u}|^{2}+|\vec{w}|^{2} .
$$

that $\vec{u} \cdot \vec{w}=0$, and the triangle must be a right triangle.
0.2. Component of vectors. Find a unit vector that points in the same direction as

$$
\langle 1,3,1\rangle .
$$

Then find the component of the vector $\langle 2,1,1\rangle$ onto this new vector.
0.3. Angles. Find the angle between the diagonal of a cube and its edges.

0.4. Angles II. Prove the identity

$$
\cos \left(\theta_{1}+\theta_{2}\right)=\cos \left(\theta_{1}\right) \cos \left(\theta_{2}\right)-\sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right)
$$

by using the dot product formula for angles and the following setup of vectors.

