(1) Find the length of both diagonals on a parallelogram with corners

$$
(1,1),(2,3),(2,0),(3,2)
$$

Solution:Let's first draw a picture of what is happening here:

The sides of the parallelograms are given by the vectors \vec{v} and \vec{u}, which are the vectors

$$
\left.\begin{array}{rl}
\vec{v} & =\langle 3,2\rangle-\langle 2,0\rangle
\end{array}=\langle 1,2\rangle, \begin{array}{l}
\vec{u}
\end{array}=\langle 1,1\rangle-\langle 2,0\rangle=\langle-1,1\rangle\right)
$$

The diagonals of the parallelogram are $\vec{u}+\vec{v}$ and $\vec{v}-\vec{u}$, which have lengths

$$
\begin{aligned}
|\vec{u}+\vec{v}|= & |\langle 0,3\rangle| \\
= & \sqrt{0^{2}+3^{2}}=3 \\
|\vec{v}-\vec{u}|= & |\langle 2,1\rangle| \\
& \sqrt{2^{2}+1^{2}}=\sqrt{5}
\end{aligned}
$$

(2) A Rhombus is a parallelogram with all 4 edges the same length. Prove that a Rhombus has diagonals which are perpendicular to each other. (Remember, a proof is any explanation of why something is true!)

Solution:Let \vec{v} and \vec{u} be the two sides of the Rhombus. Then the diagonals are $\vec{v}+\vec{u}$ and $\vec{v}-\vec{u}$. The dot product of the diagonals are

$$
\begin{aligned}
(\vec{v}+\vec{u}) \cdot(\vec{v}-\vec{u}) & =\vec{v} \cdot \vec{v}-\vec{v} \cdot \vec{u}+\vec{u} \cdot \vec{v}-\vec{u} \cdot \vec{u} \\
& =\vec{v} \cdot \vec{v}-\vec{u} \cdot \vec{u}=|\vec{v}|^{2}-|\vec{u}|^{2}=0
\end{aligned}
$$

(3) Find the unit vector which is tangent to the circle $x^{2}+y^{2}=r^{2}$ at the point $(r \cos \theta, r \sin \theta)$.

Solution:There are several ways to solve this. One way is to use geometry: the line which is tangent to the circle is perpendicular to the radial vector, so we need to take a vector which is unit and perpendicular to $\vec{v}=\langle r \cos \theta, r \sin \theta\rangle$. One way to produce a perpendicular vector in the plane is to switch the x and y components, and put a minus sign in front of one of them. In this case, $\vec{u}=\langle-r \sin \theta, r \cos \theta\rangle$ would be a vector perpendicular to \vec{v}. The unit vector would then be

$$
\frac{\vec{v}}{|\vec{v}|}=\langle-\sin \theta, \cos \theta\rangle
$$

(4) Discuss with somebody else the philosophical differences between points (x, y, z) and a vector $\langle a, b, c\rangle$. Both of them are geometric objects, so why use two different kinds of notation?

