- 1. Let \vec{F} be vector field on a region $U \subset \mathbb{R}^2$.
 - (a) Prove the 2-dimensional divergence theorem:

$$\int_U \nabla \cdot \vec{F} dA = \int_C F \cdot \vec{n} \, ds.$$

Here, \vec{n} is the normal vector to the curve C, and C bounds the region U.

(b) Let \vec{F} be the vector field

$$\left\langle \frac{x}{x^2+y^2}, \frac{y}{x^2+y^2} \right\rangle$$

Compute $\int_C \vec{F} \cdot \vec{n} \, ds$ for any curve C which does not go around the origin.

- (c) Compute $\int_C \vec{F} \cdot \vec{n} \, ds$ for any curve C which does go around the origin.
- 2. (a) Let \vec{F} be the vector field $\langle 3x, 2y, 0 \rangle$. Integrate

$$\iint_S \vec{F} \cdot dS$$

where S is the sphere of radius 3 centered at the origin.

(b) Let \vec{F} be the vector fields $\langle -3y, 3x, 0 \rangle$. Integrate

$$\iint_{H} \vec{F} \cdot dH$$

where H is the upper half hemisphere of the sphere of radius 3 centered at the origin.

(c) Let $\vec{F} = \langle xze^y, -xze^{-y}, z \rangle$. Integrate this vector field over the region

$$x + y + z = 1$$

in the first octant, oriented downward.

3. Define the Laplacian of a function $f : \mathbb{R}^3 \to \mathbb{R}$ to be the quantity

$$\nabla^2 f = \operatorname{div}\operatorname{grad} f.$$

Suppose that $\nabla^2 f = 0$.

- (a) Show that $f(\rho, \theta, \phi) = \frac{1}{\rho}$ has the property that $\nabla^2 f = 0$.
- (b) Suppose that p is a maximum on for f on some region U i.e. $f(x) \leq f(p)$ for every point $x \in U \subset \mathbb{R}^3$. Make an argument for why $p \in \partial U$, the boundary of U.
- (c) Conclude that a function with $\nabla^2 f = 0$ has no absolute maxima or minima on \mathbb{R}^3 .
- 4. (a) Sketch the surface parameterized by the equations

$$x(s,t) = (\sin(t) + 2) \cos s$$
$$y(s,t) = (\sin(t) + 2) \sin s$$
$$z(s,t) = \cos(t)$$

- (b) Find the volume of the figure.
- 5. Let U_{ab} be the box

$$-a \le x \le a$$
 $-b \le y \le b$ $0 \le z \le \frac{1}{ab}$

Let S_{ab} be the portion of the boundary of U_{ab} with z > 0. Find values for a and b that maximize the quantity

$$\int_{S_{ab}} \left(\left(-\frac{1}{x^2} - \frac{1}{y^2} \right) \vec{k} \right) \cdot dS$$

up to the constraint that $\operatorname{vol} U_{ab} = 1$.