1. Let \vec{F} be vector field on a region $U \subset \mathbb{R}^{2}$.
(a) Prove the 2-dimensional divergence theorem:

$$
\int_{U} \nabla \cdot \vec{F} d A=\int_{C} F \cdot \vec{n} d s
$$

Here, \vec{n} is the normal vector to the curve C, and C bounds the region U.
(b) Let \vec{F} be the vector field

$$
\left\langle\frac{x}{x^{2}+y^{2}}, \frac{y}{x^{2}+y^{2}}\right\rangle
$$

Compute $\int_{C} \vec{F} \cdot \vec{n} d s$ for any curve C which does not go around the origin.
(c) Compute $\int_{C} \vec{F} \cdot \vec{n} d s$ for any curve C which does go around the origin.
2. (a) Let \vec{F} be the vector field $\langle 3 x, 2 y, 0\rangle$. Integrate

$$
\iint_{S} \vec{F} \cdot d S
$$

where S is the sphere of radius 3 centered at the origin.
(b) Let \vec{F} be the vector fields $\langle-3 y, 3 x, 0\rangle$. Integrate

$$
\iint_{H} \vec{F} \cdot d H
$$

where H is the upper half hemisphere of the sphere of radius 3 centered at the origin.
(c) Let $\vec{F}=\left\langle x z e^{y},-x z e^{-y}, z\right\rangle$. Integrate this vector field over the region

$$
x+y+z=1
$$

in the first octant, oriented downward.
3. Define the Laplacian of a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ to be the quantity

$$
\nabla^{2} f=\operatorname{div} \operatorname{grad} f
$$

Suppose that $\nabla^{2} f=0$.
(a) Show that $f(\rho, \theta, \phi)=\frac{1}{\rho}$ has the property that $\nabla^{2} f=0$.
(b) Suppose that p is a maximum on for f on some region U i.e. $f(x) \leq f(p)$ for every point $x \in U \subset \mathbb{R}^{3}$. Make an argument for why $p \in \partial U$, the boundary of U.
(c) Conclude that a function with $\nabla^{2} f=0$ has no absolute maxima or minima on \mathbb{R}^{3}.
4. (a) Sketch the surface parameterized by the equations

$$
\begin{aligned}
& x(s, t)=(\sin (t)+2) \cos s \\
& y(s, t)=(\sin (t)+2) \sin s \\
& z(s, t)=\cos (t)
\end{aligned}
$$

(b) Find the volume of the figure.
5. Let $U_{a b}$ be the box

$$
-a \leq x \leq a \quad-b \leq y \leq b \quad 0 \leq z \leq \frac{1}{a b}
$$

Let $S_{a b}$ be the portion of the boundary of $U_{a b}$ with $z>0$. Find values for a and b that maximize the quantity

$$
\int_{S_{a b}}\left(\left(-\frac{1}{x^{2}}-\frac{1}{y^{2}}\right) \vec{k}\right) \cdot d S
$$

up to the constraint that $\operatorname{vol} U_{a b}=1$.

