Quiz 9
NAME:
Problem 1: Jacobians. Find the determinant of the Jacobian for switching from cylindrical to spherical coordinates.

Problem 2: Jacobians. Let $s(x, y)$ and $t(x, y)$ describe a change of coordinates. Let $x(u, v)$ and $y(u, v)$ describe a change of coordinates. Prove the following identity:

$$
\left|\frac{\partial(s, t)}{\partial(x, y)}\right|\left|\frac{\partial(x, y)}{\partial(u, v)}\right|=\left|\frac{\partial(s, t)}{\partial(u, v)}\right|
$$

Problem 3: Line integrals. Compute the line integral of the vector field

$$
F(x, y, z)=\left\langle 3 x^{2}+2 y z+3 y^{2}, 2 x z+6 x y, 2 x y+4\right\rangle
$$

along the curve parameterized by

$$
\gamma(t)=\left\langle\sin (t), \cos ^{2}(t), \sin ^{3}(t)\right\rangle
$$

where $0 \in[0, \pi]$.

Interesting Puzzle, will not be graded. 8 math graduate students and their advisors are at a party. Many handshakes took place, but no one shook the hand of their own advisor. I asked everybody how many hands they had shaken, and everybody gave a different answer. How many hands did my advisor shake?

