1. Find all of the points where the function $f(x, y, z)=x^{2}+y^{2}+z^{2}$ achieves a maximal and minimal value over unit cone

$$
\left\{(x, y, z) \mid 0 \leq z, z \leq 1-\sqrt{x^{2}+y^{2}}\right\}
$$

2. Find the cone with largest volume that has surface area 1.
3. Write definition for a function $f(x, y)$ to be differentiable at a point p. Then show by any means that the function

$$
f(x, y)=\frac{3 x^{2} y-y^{2}}{x^{2}+y^{2}}
$$

is not differentiable.
4. A right cone of height 100 , with vertex at the origin, is intersected with a sphere of radius 1 , which is centered at the origin. What is the volume of the intersection?
5. What is the surface area of $1+3 x+2 y^{2}$ over the triangle with corners $(0,0),(0,1),(2,1)$?
6. The tastiness density of a unit orange is given by a function $T(x, y, z)$. A half orange eight is given by this drawn region below:

- Set up 3 integrals in Cartesian Coordinates that compute the tastiness of the half orange eighth.
- Set up 3 integrals in Cylindrical Coordinates that compute the tastiness of the half orange eighth.
- Set up 3 integrals in Spherical coordinates that compute the tastiness of the half orange eighth.

