Quiz 4
NAME:
(a) Find a parameterization $\vec{l}(s)$ for the tangent line at the point $\vec{f}(0)$ for the vector valued function

$$
\vec{f}(t)=\langle\sin t, \cos t, t\rangle
$$

Solution: We have that the velocity vector of a parameterized curve is given by taking derivatives in each of its components, giving us

$$
\overrightarrow{f^{\prime}}(t)=\langle\cos t,-\sin t, 1\rangle
$$

At $t=0$, this is the vector $\langle 1,0,1\rangle$. The line that travels in this direction that starts at the point $\vec{f}(0)$ is given by

$$
\vec{l}(s)=\langle t+0,1, t+0\rangle
$$

(b) Find the length of the curve between time 0 and π.

Solution:The length of the curve is given by $\int_{0}^{2} \pi \frac{d s}{d t} d t$, where

$$
\frac{d s}{d t}=\sqrt{\frac{d x}{d t}+\frac{d y}{d t}+\frac{d z}{d t}}=\sqrt{2}
$$

Therefore the length of the curve is $\pi \sqrt{2}$.

Problem 2: The Saddle:

The saddle is given by the function

$$
z=x^{2}-y^{2}
$$

Draw a contour plot of the saddle, for integer values of z between -3 and 3 .
Solution:Here is such a drawing. The level curves are not for the integer z values between -3 and 3 , but the shape is generally correct.

Problem 3: Continuity

Consider the function

$$
z=\left\{\begin{array}{cc}
\frac{x y}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\
0 & (x, y)=(0,0)
\end{array}\right.
$$

Determine range of the function, and the domain on which the function is continuous.
Solution:Let's start by computing the domain of continuity. We know that the function must be continuous except possibly where the denominator $x^{2}+y^{2}=0$. Here, it is not continuous- observe that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} f(1 / n, 1 / n) & =1 / 2 \\
\lim _{n \rightarrow \infty} f(0,1 / n) & =0
\end{aligned}
$$

so the function is not continuous at the origin.
For the range, we have that $(x-y)^{2}=x^{2}-2 x y+y^{2} \geq 0$, which tells us that $x^{2}+y^{2} \geq 2 x y$. This tells us that the value of the function can never be bigger than $1 / 2$. It indeed achieves this value along the line $x=y$. Likewise, we see that the minimum value of this function is $\frac{-1}{2}$, which it achieves along the line $x=-y$.

Interesting Puzzle, Will not be graded. There is a prison run by a strange and mathematically inclined warden. He gathers 20 prisoners in a room, and gives them colorful hats. No prisoner can see their own hat, but can see all the other hats. The warden then says "At least one of you is wearing a red hat. I will ask all of you together to raise your hand if you are wearing a red hat. If one of you raises your hand incorrectly, I will take away all of your meals for the week. If everybody who is wearing a red hat correctly identifies themselves, I will let you all go free. There is no penalty for not raising your hand. Also, I will continue to ask the group 'Are you wearing a red hat' until either somebody is wrong, or all the red hats have been identified."
So he begins: "Are you wearing a red hat?"
As nobody knows the color of their own hat, nobody raises their hands. And he asks the group again, "Are you wearing a red hat? " Is there a way for a group of rational prisoners to save themselves?

