Here are a few problems related to things we have looked at so far.

Problem 1

(a) What shape is each one of these quadratics? What is the shape of their intersection? It may help you to draw out the quadratics.

$$
\begin{aligned}
x y+z^{2} & =1 \\
x^{2}+y^{2}+z^{2} & =2
\end{aligned}
$$

(b) The intersection of the two quadratics has two components. One of the components contains the point $(1,0,1)$. Find a plane that contains this component.

Problem 2

Look at the polar curve

$$
r(\theta)=\sqrt{2} \csc \theta
$$

(a) Find the length of the curve where $\pi / 4 \leq \theta \leq 3 \pi / 4$
(b) Find the area bounded by the x axis and the curve, where $\pi / 4 \leq \theta \leq 3 \pi / 4$.

Problem 3

The slipped cycloid is given by the equations

$$
\begin{aligned}
x(t) & =\sin (2 t)+t \\
y(t) & =\cos (2 t)
\end{aligned}
$$

Find the length of the curve as t ranges between 0 and 2π.

