Problem: Find the surface area of the shape generated by rotating the curve $y^{2}=x^{3}$ around the y axis, where x takes on values between 0 and 1 .

Solution: We know that the surface area of a rotation around the y axis is given by

$$
\int_{a}^{b} 2 \pi x d s
$$

We have that $d s=\sqrt{1-\left(f^{\prime}(x)\right)^{2}} d x$. Computing $f^{\prime}(x)=\frac{3}{2} x^{1 / 2}$,

$$
\begin{aligned}
\int_{0}^{1} 2 \pi x \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x & =\int_{a}^{b} 2 \pi x \sqrt{1-\left(\frac{3}{2} x^{1 / 2}\right)^{2}} d x \\
& =2 \pi \int_{0}^{1} x \sqrt{1+\frac{9}{4} x} d x
\end{aligned}
$$

Substituting $u=1+\frac{9}{4} x$, and $d u=\frac{9}{4} d x$

$$
\begin{aligned}
& =2 \pi \int_{u(0)}^{u(1)} \frac{4}{9}(u-1) \sqrt{u} \frac{4}{9} d u \\
& =2 \pi \int_{u(0)}^{u(1)} \frac{16}{81}\left(u^{3 / 2}-u^{1 / 2}\right) d u \\
& =\left.2 \pi \frac{16}{81}\left(\frac{2}{5} u^{5 / 2}-\frac{2}{3} u^{3 / 2}\right)\right|_{u(0)} ^{u(1)}
\end{aligned}
$$

If you got this far in the problem, you got full credit. Substituting back in $u(0)=1$, and $u(1)=1+\frac{9}{4}$

$$
=2 \pi \frac{64+247 \sqrt{13}}{1215}
$$

