These are a few review problems that I stole from previous midterms and finals at UC Berkeley, with partial (or starts at least) of solutions.

Problem 1. Find the general solution to

$$
x+y y^{\prime} e^{-x}=0
$$

Solution: This is a seperable equation, and so we can seperate it and then integrate. Starting with

$$
\begin{aligned}
& x+y y^{\prime} e^{-x}=0 \\
& y \frac{d y}{d x} e^{-x}=-x \\
& y d y=-x e^{x} d x \\
& \int y d y=-\int x e^{x} d x \\
& y=\sqrt{-2 \int x e^{x} d x}
\end{aligned}
$$

Problem 2. Find the general solution to

$$
y^{\prime \prime}+y=\sec x
$$

Solution: We can solve using that terrible method the thing with undetermined coeffecients. We have two solutions to the auxiliarry equation are $y_{1}=\sin x$ and $y_{2}=\cos x$. Therefore the Wronskian $W(\sin x, \cos x)=$ 1 , which makes things a little bit easier. Then

$$
u_{1}=-\int \sec x \cos x d x \quad u_{2}=\int \sec x \sin x
$$

Solving the left integral gives you $u_{1}=-x$. The right integral is $u_{2}=-\ln (\cos x)$. So the particular solution is $y_{p}=x \sin x+-(\ln (\cos x)) \cos x$.

Problem 3. Does this following integral converge or diverge

$$
\int_{1}^{2} \frac{4 w}{\sqrt[3]{w^{2}-4}}
$$

Solution: Making the subsitution $u=w^{2}-4$, we have $\int_{-1}^{0} \frac{2}{\sqrt[3]{u}}$, which converges.
Problem 4. Find the solution to the differential equation $y^{\prime \prime}-x y^{\prime}-y=0$ with initial conditions of $y(0)=0$, $y^{\prime}(0)=1$.
Solution: This one is no fun, because you have to solve it by guessing a series. Guess the series $y=$ $\sum_{n=0}^{\infty} a_{n} x^{n}$. Then

$$
\begin{gathered}
y^{\prime \prime}=\sum_{n=2}^{\infty} a_{n}(n)(n-1) x^{n-2} \\
y=\sum_{n=1}^{\infty} a_{n}(n) x^{n-1}
\end{gathered}
$$

Making the substitutions for indexes, we get

$$
y^{\prime \prime}=\sum_{n=0}^{\infty} a_{n+2}(n+1)(n) x^{n}
$$

Plugging it back into our differential equation we have

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left(a_{n+2}(n+1)(n) x^{n}\right)-x \sum_{n=1}^{\infty}\left(a_{n}(n) x^{n-1}\right)-\sum_{n=0}^{\infty}\left(a_{n} x^{n}\right)=0 \\
& 2 \cdot 1 a_{2} \cdot x^{0}-a_{0} x^{0}+\sum_{n=1}^{\infty}\left(a_{n+2}(n+1)(n)-n a_{n}-a_{n}\right) x^{n}=0
\end{aligned}
$$

From here you just need to solve the relation for the a_{n}. We have for all n greater than 1 the relation

$$
a_{n+2}(n+1)(n)-a_{n}(n+1)=0
$$

so you just plug in until you can find the pattern!
Problem 5. Determine if the following series converge or diverges. Justify your solution.

$$
\begin{gathered}
\sum_{n=1}^{\infty}\left(\frac{2 n+2}{n+4}\right)^{n} \\
\sum_{n=1}^{\infty} \frac{n^{n}}{\left(n^{2}\right)!} \\
\sum_{n=1}^{\infty}(-1)^{n} \ln (1+1 / n)
\end{gathered}
$$

Solution: Here are two solutions to the second one. The first one (Chen Yusu) used the ratio test.

$$
\lim _{n \rightarrow \infty} \frac{\frac{(n+1)^{n+1}}{\left((n+1)^{2}\right)!}}{\frac{n^{n}}{\left(n^{2}\right)!}}=\frac{\frac{(n+1)(n+1)^{n}}{\left(1 \cdot 2 \cdot 3 \cdots\left(n^{2}-1\right) \cdot n^{2} \cdot\left(n^{2}+1\right) \cdots\left((n+1)^{2}-1\right) \cdot(n+1)^{2}\right.}}{\frac{n^{n}}{\left(1 \cdot 2 \cdot 3 \cdot \cdots\left(n^{2}-1\right) \cdot n^{2}\right.}}
$$

Combining the $(n+1)^{n}$ and the n^{n}

$$
\begin{aligned}
& =(n+1)\left(1+\frac{1}{n}\right)^{n}\left(\frac{\left(1 \cdot 2 \cdot 3 \cdots\left(n^{2}-1\right) \cdot n^{2}\right.}{\left(1 \cdot 2 \cdot 3 \cdots\left(n^{2}-1\right) \cdot n^{2} \cdot\left(n^{2}+1\right) \cdots\left((n+1)^{2}-1\right) \cdot(n+1)^{2}\right.}\right) \\
& =(n+1)\left(1+\frac{1}{n}\right)^{n}\left(\frac{1}{\left(n^{2}+1\right) \cdots\left((n+1)^{2}-1\right) \cdot(n+1)^{2}}\right)
\end{aligned}
$$

Using the fact that $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$

$$
\begin{equation*}
=(n+1) e\left(\frac{1}{\left(n^{2}+1\right) \cdots\left((n+1)^{2}-1\right) \cdot(n+1)^{2}}\right)= \tag{0}
\end{equation*}
$$

so by the ratio test it converges. Another way to solve this problem (Margaret Xiao) is by using the comparison test. Notice that whenever $n>2$ we have that each term looks like

$$
\frac{n \cdot n \cdot n \cdots n \cdot n}{1 \cdot 2 \cdots n \cdot(n+1) \cdot(n+2) \cdots\left(n^{2}-1\right) \cdot\left(n^{2}\right)} \leq \frac{1}{n!}
$$

Where does this inequality come from. Well, the terms in the denominator coming after n are all greater than n, and there are at least n of them, so we can cancel them out with the ones that are in the numerator. Since $\sum \frac{1}{n!}$ converges, so does the above sum.
Problem 6. Determine the interval of convergence for the power series $\sum_{n=1}^{\infty} \ln (n) x^{n}$
Solution: Use the ratio test.
Problem 7. Calculate the volume of a sphere, using any method you wish.
Solution: Calculate the volume of rotation of the curve $y=\sqrt{1-x^{2}}$ for instance.

