
These are a few review problems that I stole from previous midterms and finals at UC Berkeley, with
partial (or starts at least) of solutions.

Problem 1. Find the general solution to

x + yy′e−x = 0

Solution: This is a seperable equation, and so we can seperate it and then integrate. Starting with

x + yy′e−x =0

y
dy

dx
e−x =− x

ydy =− xexdx∫
ydy =−

∫
xexdx

y =

√
−2

∫
xexdx

Problem 2. Find the general solution to

y′′ + y = secx

Solution: We can solve using that terrible method the thing with undetermined coeffecients. We have two
solutions to the auxiliarry equation are y1 = sinx and y2 = cosx. Therefore the Wronskian W (sinx, cosx) =
1, which makes things a little bit easier. Then

u1 = −
∫

secx cosxdx u2 =

∫
secx sinx

Solving the left integral gives you u1 = −x. The right integral is u2 = − ln(cosx). So the particular solution
is yp = x sinx +−(ln(cosx)) cosx.

Problem 3. Does this following integral converge or diverge∫ 2

1

4w
3
√
w2 − 4

Solution: Making the subsitution u = w2 − 4, we have
∫ 0

−1
2
3
√
u

, which converges.

Problem 4. Find the solution to the differential equation y′′−xy′−y = 0 with initial conditions of y(0) = 0,
y′(0) = 1.
Solution: This one is no fun, because you have to solve it by guessing a series. Guess the series y =∑∞

n=0 anx
n. Then

y′′ =

∞∑
n=2

an(n)(n− 1)xn−2

y =

∞∑
n=1

an(n)xn−1

Making the substitutions for indexes, we get

y′′ =

∞∑
n=0

an+2(n + 1)(n)xn

1



2

Plugging it back into our differential equation we have
∞∑

n=0

(an+2(n + 1)(n)xn)− x

∞∑
n=1

(an(n)xn−1)−
∞∑

n=0

(anx
n) =0

2 · 1a2 · x0 − a0x
0 +

∞∑
n=1

(an+2(n + 1)(n)− nan − an)xn =0

From here you just need to solve the relation for the an. We have for all n greater than 1 the relation

an+2(n + 1)(n)− an(n + 1) = 0

so you just plug in until you can find the pattern!

Problem 5. Determine if the following series converge or diverges. Justify your solution.
∞∑

n=1

(
2n + 2

n + 4

)n

∞∑
n=1

nn

(n2)!

∞∑
n=1

(−1)n ln(1 + 1/n)

Solution: Here are two solutions to the second one. The first one (Chen Yusu) used the ratio test.

lim
n→∞

(n+1)n+1

((n+1)2)!
nn

(n2)!

=

(n+1)(n+1)n

(1·2·3···(n2−1)·n2·(n2+1)···((n+1)2−1)·(n+1)2

nn

(1·2·3···(n2−1)·n2

Combining the (n + 1)n and the nn

=(n + 1)

(
1 +

1

n

)n(
(1 · 2 · 3 · · · (n2 − 1) · n2

(1 · 2 · 3 · · · (n2 − 1) · n2 · (n2 + 1) · · · ((n + 1)2 − 1) · (n + 1)2

)
=(n + 1)

(
1 +

1

n

)n(
1

(n2 + 1) · · · ((n + 1)2 − 1) · (n + 1)2

)
Using the fact that limn→∞

(
1 + 1

n

)n
= e

=(n + 1)e

(
1

(n2 + 1) · · · ((n + 1)2 − 1) · (n + 1)2

)
= 0

so by the ratio test it converges. Another way to solve this problem (Margaret Xiao) is by using the
comparison test. Notice that whenever n > 2 we have that each term looks like

n · n · n · · ·n · n
1 · 2 · · ·n · (n + 1) · (n + 2) · · · (n2 − 1) · (n2)

≤ 1

n!

Where does this inequality come from. Well, the terms in the denominator coming after n are all greater
than n, and there are at least n of them, so we can cancel them out with the ones that are in the numerator.
Since

∑
1
n! converges, so does the above sum.

Problem 6. Determine the interval of convergence for the power series
∑∞

n=1 ln(n)xn

Solution: Use the ratio test.

Problem 7. Calculate the volume of a sphere, using any method you wish.
Solution: Calculate the volume of rotation of the curve y =

√
1− x2 for instance.


