Problem 1. The general solution to a differential equation of the form

$$
f^{\prime \prime}(x)+2 f^{\prime}(x)+f(x)=0
$$

are solutions of the form $c_{1} e^{-x}+c_{2} x e^{-x}$
Verify that these are solutions to the differential equation, and find a solution that has $f(0)=0$, and $f^{\prime}(0)=1$.

Solution: To check that $f(x)=c_{1} e^{-x}+c_{2} x e^{-x}$ is a valid solution to the differential equation, we take two derivatives

$$
\begin{aligned}
f(x) & =c_{1} e^{-x}+c_{2} x e^{-x} \\
f^{\prime}(x) & =-c_{1} e^{-x}-c_{2} x e^{-x}+c_{2} e^{-x} \\
f^{\prime \prime}(x) & =c_{1} e^{-x}+c_{2} x e^{-x}-2 c_{2} e^{-x}
\end{aligned}
$$

Plugging in $f, f^{\prime}, f^{\prime \prime}$ into the differential equation shows that it does in fact satisfy the required conditions. Now to find the solution that fits our initial conditions. Letting $x=0$, we have that

$$
0=f(0)=c_{1} e^{0}+c_{2}(0) e^{0}
$$

This shows that $c_{1}=0$. We then have

$$
1=f^{\prime}(0)=-(0) e^{0}-c_{2}(0) e^{-(0)}+c_{2} e^{-(0)}
$$

Which shows that $c_{2}=1$
Problem 2. Consider the differential equation $y^{\prime}=y(y-1)^{2}$. What are the equilibrium solutions to this differential equation, and for what values of c does a solution with initial values $y(0)=c$ have $\lim _{t \rightarrow \infty} y(t)$ be convergent? (it might be helpful to draw some pictures.)

Solution: We have that the equilibrium solutions are where $y^{\prime}=0$. So the equilibrium solutions are $y(t)=1$ and $y(t)=0$. We have that

$$
y^{\prime} \begin{cases}\geq 0 & \text { When } y \geq 0 \\ \leq 0 & \text { When } y<0\end{cases}
$$

This means that if we start at a value greater than 1 , the function will go to infinity. Likewise, if we start at a value less than 1 , the function will go to negative infinity. If we start in the interval $(0,1]$, we have the function will increase to 1 . Finally, if we start at 0 , the solution is stable. Therefore, the solutions that do not diverge as t goes to infinity have initial values $y(0)$ in $[0,1]$

Problem 3. (15 Points) Consider the differenial equation $y^{\prime}(x)=\frac{-x}{y(x)}$.
(1) Find all the points where the slope field has slope 0
(2) Find an equation for where the slope field has slope m (an isocline for slope m)
(10 points) Using these two pices of data, draw a slope field for the differential equation above with at least 8 slopes.
(5 points)Using any method you know, find a solution to the differential equation $y^{\prime}(x)=\frac{-x}{y(x)}$. (Hint: if you have a well drawn slope field, you should be able to guess the solution)

Solution: The isoclines for slope m are the lines $y=\frac{-1}{m} x$. If you plot out a couple of slopes, you should get a figure that looks like this

From here, you could guess that the solution was a circle. Plugging in $y=\sqrt{1-x^{2}}$ into the differential equation shows this to be a valud solution.

