Quiz 8

Name:

Problem 1. Find the 3rd order approximation of $\tan (x)$ by a Taylor series. (Do not solve for the entire Taylor series, this is very hard!)

Solution: The easiest way to solve this problem was to take derivatives of tangent and then evaluate them at zero. We have

$$
\begin{aligned}
f(x) & =\tan (x) \\
f^{\prime}(x) & =\sec ^{2}(x) \\
f^{\prime \prime}(x) & =2 \tan (x) \sec ^{2}(x) \\
f^{\prime \prime \prime}(x) & =2 \sec ^{2}(x) \sec ^{2}(x)+2 \tan (x) 2 \sec (x) \sec (x) \tan (x)
\end{aligned}
$$

Evaluating at zero gives

$$
\begin{aligned}
f(0) & =0 \\
f^{\prime}(0) & =1 \\
f^{\prime \prime}(0) & =0 \\
f^{\prime \prime \prime}(0) & =2
\end{aligned}
$$

So the taylor expansion to the third term is

$$
\frac{x}{1!}+\frac{2 x^{3}}{3!}+\cdots
$$

Problem 2. Write a sum that approximates $\sin (1)$ to better than .1 and prove that your estimate is at least this accurate.

Solution: You can derive the Taylor series for $\sin (x)$, or you can have it memorized

$$
\sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots
$$

We notice that this is an alternating series, so we may use the alternating series bound for error. We notice that $1 / 5!<.1$, so

$$
1-\frac{1^{3}}{3!}=5 / 6
$$

is an approximation of $\sin (1)$ that is better than .1

Problem 3. Write a sum that gives the 10th derivative of $e^{x} \frac{1}{1-x}$ at 0 . (Hint: Use the product of power series)
Solution: When we take the product of these two series, we have that

$$
\begin{aligned}
e^{x} \frac{1}{1-x} & =\left(\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\right)\left(\sum_{m=0}^{\infty} x^{m}\right) \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} \frac{1}{k!} \cdot 1\right) x^{n}
\end{aligned}
$$

Letting $f(x)=e^{x} \frac{1}{1-x}$ and using the Taylor series expansion

$$
=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}
$$

Looking at the tenth term of this series, we get

$$
\frac{f^{(10)}(0)}{10!} x^{10}=\left(\sum_{k=0}^{10} \frac{1}{k!} \cdot 1\right) x^{10}
$$

which tells us that $f^{(10)}(0)=10!\left(\sum_{k=0}^{1} 0 \frac{1}{k!}\right)$

