Here are a few review problems for power series.

. . 1
Problem 1. Find a power series for ;—p -

Solution: We first notice that the denominator of this series is a perfect square, so we can factor it. Then
we will integrate to remove a power in the denominator, then make a substitution, and then do everything
in reverse. All in all, it should look something like this;
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Problem 2. Use a power series to approximate this integral fol In(1 + 22) to better than 2 decimal places.
Prove that you have approximated it to this accuracy.

Solution: We first need to find a power series for fg In(1 + 22)dxr. We notice if we take two derivatives of

this, we will have H%’ into which we can make a substitution v = —a2.
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As the sum is an alternating series, we can use the alternating series test to estimate what this sum is.

Problem 3. Find a power series for the product 12— arctan(z).

Solution: We can use the rule for the product of the power series to get a power series for each ﬁ
and arctan(x). Notice that the derivative of arctan(x) is ﬁ, which looks suspiciously like something we
should get a power series for. (I'm not going to actually compute this power series, but what you get is

tan(z) = S ED" We know that —L = S°°° 2. Th series for 1L arctan(z) is
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Taking the product of a few of these terms by hand gives us
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So the coefficient in front of 2™ is the alternating sum of all odd fractions where the denominator is less
than m.

Problem 4. Find the radius of convergence and interval of convergence for the power series Y~ | = (z+1)".
Solution: Use Ratio Test



