Here are a few review problems for power series.
Problem 1. Find a power series for $\frac{1}{4-4 x+x^{2}}$
Solution: We first notice that the denominator of this series is a perfect square, so we can factor it. Then we will integrate to remove a power in the denominator, then make a substitution, and then do everything in reverse. All in all, it should look something like this;

Problem 2. Use a power series to approximate this integral $\int_{0}^{1} \ln \left(1+x^{2}\right)$ to better than 2 decimal places. Prove that you have approximated it to this accuracy.
Solution: We first need to find a power series for $\int_{0}^{t} \ln \left(1+x^{2}\right) d x$. We notice if we take two derivatives of this, we will have $\frac{1}{1+x^{2}}$, into which we can make a substitution $u=-x^{2}$.

As the sum is an alternating series, we can use the alternating series test to estimate what this sum is.
Problem 3. Find a power series for the product $\frac{1}{1-x} \arctan (x)$.
Solution: We can use the rule for the product of the power series to get a power series for each $\frac{1}{1-x}$ and $\arctan (x)$. Notice that the derivative of $\arctan (x)$ is $\frac{1}{1+x^{2}}$, which looks suspiciously like something we should get a power series for. (I'm not going to actually compute this power series, but what you get is $\arctan (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}$. We know that $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{m}$. The power series for $\frac{1}{1-x} \arctan (x)$ is

$$
\begin{aligned}
\frac{1}{1-x} \arctan (x) & =\left(\sum_{n=0}^{\infty} x^{m}\right)\left(\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}\right) \\
& =\left(1+x+x^{2}+x^{3}+\ldots\right)\left(\frac{x}{1}-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots\right)
\end{aligned}
$$

Taking the product of a few of these terms by hand gives us

$$
=(1) x+(1) x^{2}+\left(1-\frac{1}{3}\right) x^{3}+\left(1-\frac{1}{3}\right) x^{4}+\left(1-\frac{1}{3}+\frac{1}{5}\right) x^{5}+\ldots
$$

So the coefficient in front of x^{m} is the alternating sum of all odd fractions where the denominator is less than m.

Problem 4. Find the radius of convergence and interval of convergence for the power series $\sum_{n=1}^{\infty} \frac{n}{4^{n}}(x+1)^{n}$. Solution: Use Ratio Test

