Quiz 7

NAME:

Problem 1. Find the center, radius and interval of convergence for this power series.
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Solution: We use the ratio test.
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This limit is finite only when x = 5. Therefore we see that this series converges only when = = 5. So the
series is centered at 5, has a radius of convergence of 0, and an interval of convergence [5, 5].

Problem 2. Find a power series that fits this function. Then find radius and center of convergence of this
power series.
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Solution: Here is how I would solve the problem. Follow the arrows!
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We pull out a term and start to complete the square Bringing in the terms from the outside
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And now we just need to convert the sum ZZOZO —3_(”+1)($ +2)2"+3 into a proper power series. Letting
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We have that > °_ ¢,2™ is the desired power series. It is centered at z = —2, and has a radius of
convergence of /3



Problem 3. Evaluate the following sum.
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Solution: We notice that this sum can be written
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Rearranging the terms Simplifying
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Letting z = 1/4 Solving for C shows that C' = 0. Putting the x back in.
0 (x)" _
Do = —In(l—-2)+C
Differentiating the series Now integrating to undo the differentiation
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