NAME:
Problem 1. Find the center, radius and interval of convergence for this power series.

$$
\sum_{n=0}^{\infty} n!(x-5)^{n}
$$

Solution: We use the ratio test.

$$
\lim _{n \rightarrow \infty} \frac{(n+1)!(x-5)^{n+1}}{(n)!(x-5)^{n}}=\lim _{n \rightarrow \infty}(n+1)(x-5)
$$

This limit is finite only when $x=5$. Therefore we see that this series converges only when $x=5$. So the series is centered at 5 , has a radius of convergence of 0 , and an interval of convergence $[5,5]$.

Problem 2. Find a power series that fits this function. Then find radius and center of convergence of this power series.

$$
\frac{(x+2)^{3}}{1+4 x+x^{2}}
$$

Solution: Here is how I would solve the problem. Follow the arrows!

And now we just need to convert the sum $\sum_{n=0}^{\infty}-3^{-(n+1)}(x+2)^{2 n+3}$ into a proper power series. Letting

$$
c_{m}= \begin{cases}-(3)^{-\frac{m-1}{2}} & m \text { is odd and greater than } 2 \\ 0 & \text { Otherwise }\end{cases}
$$

We have that $\sum_{m=0}^{\infty} c_{m} x^{m}$ is the desired power series. It is centered at $x=-2$, and has a radius of convergence of $\sqrt{3}$

Problem 3. Evaluate the following sum.

$$
\frac{1}{4 \cdot 1}+\frac{1}{16 \cdot 2}+\frac{1}{64 \cdot 3}+\frac{1}{256 \cdot 4}+\ldots+\frac{1}{2^{2 n} \cdot n}+\ldots
$$

Solution: We notice that this sum can be written

