These are a few review problems that I stole from previous midterms at UC Berkeley. I wrote up the solutions pretty late at night, so I have skipped quite a few steps in these solutions- but it is probably good practice to go and fill in the blanks that I've left here. I hope this helps! -Jeff

1. Problem 1

For what values of p is the series $\sum_{n=1}^{\infty} \sin \left(\frac{1}{n}\right) n^{p}$ convergent?
Solution: If $p<0$, the series converges. Use the limit comparison test with $\sum_{n=1}^{\infty} \frac{1}{n^{1-p}}$

2. Problem 2

For each of the following statements, tell whether it is true or false, and give a justification for your answer. In particular, the falsity of an "if/then" statement should be justified by a counterexample.
(1) If the sequence $\left\{a_{n}\right\}$ converges to L, then a_{100} is closer to L than a_{99} is.
(2) If the series $\sum_{n=1}^{\infty} a_{n}$ is convergent, then the sequence $\left\{a_{n}\right\}$ is also convergent.
(3) If $a_{n} \rightarrow 0$ as $n \rightarrow \infty$, then the series $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ is convergent.

Solution:

(1) No! Consider the series

$$
a_{n}= \begin{cases}0 & \text { If } n<99 \\ 1 & \text { If } n=100 \\ 0 & \text { If } n>100\end{cases}
$$

(2) Yes! This is by the divergence test. if a_{n} didn't go to zero, then neither would $\sum a_{n}$, so if $\sum a_{n}$ converges, a_{n} must go to 0 .
(3) No! Here is the easy example.

$$
a_{n}=\frac{(-1)^{n}}{n}
$$

(Notice here that the alternating series test requires a_{n} to be monotonically decreasing to zero, which was not a requirement listed in the problem)

3. Problem 3

$\int \frac{\ln \left(x^{2}\right)}{x^{2}} d x$
Solution: We can first simplify the problem a little bit by looking at $\int \frac{2 \ln (x)}{x^{2}}$ instead. Then letting $u=2 \ln (x), d v=\frac{1}{x^{2}} d x$, we have that $d u=\frac{2}{x}$ and $v=\frac{-1}{x}$. Then we have

$$
\begin{aligned}
\int \frac{\ln \left(x^{2}\right)}{x^{2}} d x & =\frac{-2 \ln (x)}{x}-\int \frac{-2}{x^{2}} d x \\
& =\frac{\ln \left(x^{2}\right)}{x^{2}} d x \\
& =\frac{-2 \ln (x)}{x}-\frac{2}{x}+C
\end{aligned}
$$

4. Problem 4

Calculate $\int \frac{8-16 x}{8 x^{2}-4 x+1} d x$
Solution: Someone in the class came up with this solution, and it was totally better than mine so we are going to go with it. Look at the derivative of the $8 x^{2}-4 x+1$. The derivative of the bottom is $16 x-4$. Look suspiciously like the top, right? So you might try ans break the top into

$$
\begin{aligned}
\int \frac{8-16 x}{8 x^{2}-4 x+1} d x & =\int \frac{4-16 x}{8 x^{2}-4 x+1}+\frac{4}{8 x^{2}-4 x+1} d x \\
& =\int \frac{4-16 x}{8 x^{2}-4 x+1} d x+\int \frac{4}{8 x^{2}-4 x+1} d x
\end{aligned}
$$

Using u sub on the left, and completing the square on the right

$$
\begin{aligned}
& =\int \frac{-d u}{u}+\int \frac{4}{8\left(x-\frac{1}{4}\right)^{2}+\frac{1}{2}} d x \\
& =-\ln (u)+\int \frac{8}{(4 x-1)^{2}+1} d x
\end{aligned}
$$

Now using v sub on the right

$$
\begin{aligned}
& =-\ln \left(8 x^{2}-4 x+1\right)+8 \int \frac{1}{v^{2}+1} \frac{d v}{4} \\
& =-\ln \left(8 x^{2}-4 x+1\right)+2 \tan ^{-1}(v)+C \\
& =-\ln \left(8 x^{2}-4 x+1\right)+2 \tan ^{-1}(4 x-1)+C
\end{aligned}
$$

5. Problem 5

Determine the length of $x=\frac{1}{2} y^{2}$ for $0 \leq x \leq \frac{1}{2}$. Assume that y is positive.
Solution: Use the formula for the length. We have that $\frac{d}{d y} x=y$ and $d s=\sqrt{1+(y)^{2}} d y$

$$
\begin{aligned}
\text { Length } & =\int d s \\
& =\int \sqrt{1+(y)^{2}} d y
\end{aligned}
$$

Make the substitution $y^{2}=\tan \theta$

$$
\begin{aligned}
& =\int \sqrt{1+\tan ^{2} \theta} \sec ^{2} \theta d \theta \\
& =\int \sec ^{3} \theta d \theta
\end{aligned}
$$

The dreaded $\int \sec ^{3} \theta d \theta$ returns! I'm not going to work this one out, because there is a whole entire wikipedia article on how to integrate $\sec ^{3} \theta$.

