1. Problems to be presented on 10-11

If you are interested in doing a problem, but would like some help, email me for hints.

- First problem for presentation: Suppose that a_{n} is a decreasing sequence greater than 0 , that is

$$
a_{1} \geq a_{2} \geq \ldots \geq 0
$$

Show that if $\sum_{n=1}^{\infty}$ converges, then the series

$$
\sum_{k=0}^{\infty} 2^{k} a_{2^{k}}=a_{1}+2 a_{2}+4 a_{4}+8 a_{8}+\ldots
$$

converges as well.

- Second Problem for Presentation: Suppose that a_{n} is a decreasing sequence greater than 0 , that is

$$
a_{1} \geq a_{2} \geq \ldots \geq 0
$$

Show that if $\sum_{k=0}^{\infty} 2^{k} a_{2^{k}}=a_{1}+2 a_{2}+4 a_{4}+8 a_{8}+\ldots$ converges, then

$$
\sum_{n=1}^{\infty} a_{n}
$$

converges as well.

- Third problem for presentation: Suppose that $\sum_{n=1}^{\infty} a_{n}=0$. Can you rearrange the terms of the sum so that it converges instead to 1? (You may want to look up the greedy algorithem)

