Quiz 5
Name:
Problem 1. If the following sequence or series converges, write its limit, otherwise write diverges. You do not need to prove convergence or divergence. Each one is worth 2 points. Each wrong answer is worth -1 .
(a) $\lim _{n \rightarrow \infty} \frac{4 n^{2}+4}{(n+1)(2 n+1)}$

2
(b) $\lim _{n \rightarrow \infty} \frac{e^{n}}{n^{n}}$

0
(c) $\lim _{n \rightarrow \infty} \log \left(2 n^{3}\right)-\log \left(2 n^{3}+5\right)$

0
(d) $\lim _{n \rightarrow \infty} \frac{\log n}{\sin 1 / n}$

Diverges
(e) $\lim _{n \rightarrow \infty} \sin \left(\frac{1}{n}\right)$

0

Problem 2. For what values of r does the following series converge? Show your work.

$$
\sum_{n=1}^{\infty} n r^{n}
$$

Solution:This function is monotonic decreasing, and "nice", so you might use the integral comparison test.

$$
\begin{aligned}
\int_{0}^{\infty} x r^{x} d x & =\lim _{t \rightarrow \infty} \int_{0}^{t} x r^{x} d x \\
& =x \frac{1}{\ln (r)} r^{x}+\left.\frac{1}{(\ln (r))^{2}} r^{x}\right|_{0} ^{t}
\end{aligned}
$$

This converges only when r^{x} converges to 0 as $x \rightarrow \infty$, which only happens when r is between -1 and 1 .

Problem 3. The Fibonacci sequence is defined by the recurrence relation

$$
f_{n}=f_{n-1}+f_{n-2}
$$

Starting with $f_{0}=0, f_{1}=1$. So the first few terms are $0,1,1,2,3,5,8,13, \ldots$ Define the sequence $a_{n}=\frac{f_{n}}{f_{n-1}}$ whenever $n \geq 1$, and 0 otherwise. So the first few terms of the sequence are

$$
0,0, \frac{1}{1}, \frac{2}{1}, \frac{3}{2}, \frac{5}{3}, \ldots
$$

Show that the sequence a_{n} converges, and find what it converges to. Be sure to show your work! Solution:We have the equalities

$$
\begin{aligned}
a_{n} & =\frac{f_{n}}{f_{n-1}} \\
& =\frac{f_{n-1}+f_{n-2}}{f_{n-1}} \\
& =1+\frac{f_{n-2}}{f_{n-1}} \\
& =1+\frac{1}{a_{n-1}}
\end{aligned}
$$

If the sequence a_{n} converges, it converges to some value L. Pluggin in that value for a_{n} we have that

$$
L=1+\frac{1}{L}
$$

Solving for L yields $L=\frac{1 \pm \sqrt{5}}{2}$. Since L must be positive (as the quotient of two fibonacci numbers is positive) we have $L=\frac{1=\sqrt{5}}{2}$.

