1. Problems to be presented on 9-27

(1) First problem for presentation: Show that

$$
\int_{0}^{\infty} x^{2} e^{-x^{2}} d x=\frac{1}{2} \int_{0}^{\infty} e^{-x^{2}} d x
$$

(2) Second Problem for Presentation: Can you find a function $f(x)$ with the property that
(a) $f(n)=n$ for every whole number n
(b) $\int_{0}^{\infty} f(x) d x$ is finite.
(3) If the infinite curve e^{-x}, with $x \geq 0$ is rotated about the x axis, what is its surface area?

