Quiz 3
Name:
Problem 1. A cannonball is shot out of a cannon, and due to unusual weather conditions, flys along the abnormal path $\left.\left(\sqrt{(} 1-x^{2}\right)\right)$ How long is the cannonball's path through the sky? (Assume that the ground is given by $y=0$.)

Solution:Note: this problem was too difficult. For grading, I only looked to see if you had reached the step marked (\star).
We use the formula

$$
\ell=\int_{a}^{b} d s
$$

where $d s=\sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$. The derivative here is $(100-2 x)$, making our integral (\star).

$$
\ell=\int_{0}^{100} \sqrt{1+(100-2 x)^{2}} d x
$$

If you got to this part, you got full credit. To actually solve the problem was a little more difficult. Making the substitution $r=100-2 x$, we have $d r=-2 d x$

$$
\ell=\int_{a}^{b} \frac{-1}{2} \sqrt{1+(r)^{2}} d u
$$

Making the substitution $r=\tan \theta, d r=\sec ^{2} \theta d \theta$

$$
\frac{-1}{2} \int_{a}^{b} \sec ^{3} \theta d \theta
$$

From here, there were two ways to solve the problem. One uses a substitution of sinh. However, as this was only briefly covered in the textbook, we will solve by integrating by parts.

$$
\begin{aligned}
\int \sec ^{3} \theta d \theta & =\int u d v \\
& =u v-\int v d u \\
& =\sec \theta \tan \theta-\int \sec \theta \tan ^{2} \theta d \theta \\
& =\sec \theta \tan \theta-\int \sec \theta\left(\sec ^{2} \theta-1\right) d \theta \\
& =\sec \theta \tan \theta-\left(\int \sec ^{3} \theta d \theta-\int \sec \theta d \theta .\right) \\
& =\sec \theta \tan \theta-\int \sec ^{3} \theta d \theta+\int \sec \theta d \theta
\end{aligned}
$$

Next we add $\int \sec ^{3} x d x$ to both sides of the equality just derived:

$$
\begin{aligned}
2 \int \sec ^{3} \theta d \theta & =\sec \theta \tan \theta+\int \sec \theta d \theta \\
& =\sec \theta \tan \theta+\ln |\sec \theta+\tan \theta|+C
\end{aligned}
$$

Then divide both sides by 2 :

$$
\int \sec ^{3} \theta d \theta=\frac{1}{2} \sec \theta \tan \theta+\frac{1}{2} \ln |\sec \theta+\tan \theta|+C_{1}
$$

Problem 2. [Discussion 214] Determine whether or not the integral is convergent or divergent. If it is convergent, evaluate it. If it is divergent, prove that it diverges.

$$
\int_{0}^{\infty}(\sin x)^{2} e^{-x} d x
$$

Solution:First, let's show that this integral converges. We know that $(\sin x)^{2} e^{-x} \leq e^{-x}$, and $\int_{0}^{\infty} e^{-x} d x=1$, so this must converge by the comparison test. Now let us actually compute what it converges to.

$$
\int_{0}^{\infty}(\sin x)^{2} e^{-x} d x=\lim _{m \rightarrow \infty} \int_{0}^{m}(\sin x)^{2} e^{-x} d x
$$

Integrating by parts, we let $u=(\sin x)^{2}$ and $d v=e^{-x}$

$$
\begin{aligned}
& =\lim _{m \rightarrow \infty}\left(-\left.(\sin x)^{2} e^{-x}\right|_{0} ^{m}-\int_{0}^{m} 2 \sin (x) \cos (x) e^{-x} d x\right) \\
& =\lim _{m \rightarrow \infty}\left(-\left.(\sin x)^{2} e^{-x}\right|_{0} ^{m}-\int_{0}^{m} \sin 2 x e^{-x} d x\right)
\end{aligned}
$$

We can use integration by parts to solve the right side

$$
=\lim _{m \rightarrow \infty}\left(-\left.(\sin x)^{2} e^{-x}\right|_{0} ^{m}+\left.\frac{1}{5} e^{-x}(2 \cos (2 x)+\sin (2 x))\right|_{0} ^{m}\right)
$$

Taking the limit as m goes to infinity, we get $\frac{2}{5}$
Problem 2. [Discussion 207] Determine whether or not the integral is convergent or divergent. If it is convergent, evaluate it. If it is divergent, prove that it diverges.

$$
\int_{0}^{\infty}(\sin x)^{2} e^{x} d x
$$

Solution:Let us prove that this thing diverges. We know that

$$
\int_{0}^{\infty}(\sin x)^{2} e^{x} d x=\lim _{m \rightarrow \infty} \int_{0}^{m}(\sin x)^{2} e^{x} d x
$$

We know that $e^{x}>1$ whenever $x>0$

$$
\begin{aligned}
& \geq \lim _{m \rightarrow \infty} \int_{0}^{m}(\sin x)^{2} 1 d x \\
& \geq \lim _{m \rightarrow \infty} \int_{0}^{m}(\sin x)^{2} d x \\
& =\lim _{m \rightarrow \infty}\left(1 /\left.2(x-\cos (x) \sin (x))\right|_{0} ^{m}\right) \\
& =\lim _{m \rightarrow \infty}\left(1 /\left.2 x\right|_{0} ^{m}\right)-\lim _{m \rightarrow \infty}\left(1 /\left.2 \cos (x) \sin (x)\right|_{0} ^{m}\right)
\end{aligned}
$$

The term on the left goes to infinity, and the term on the right is always between 0 and 1 , so the whole thing goes to infinity.

Problem 3. Find the surface area of the shape generated by rotating the curve $y^{2}=x^{3}$ around the y axis, where x takes on values between 0 and 1 .

Solution: We know that the surface area of a rotation around the y axis is given by

$$
\int_{a}^{b} x d s
$$

We have that $d s=\sqrt{1-\left(f^{\prime}(x)\right)^{2}} d x$. Computing $f^{\prime}(x)=\frac{3}{2} x^{1 / 2}$,

$$
\begin{aligned}
\int_{0}^{1} x \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x & =\int_{a}^{b} x \sqrt{1-\left(\frac{3}{2} x^{1 / 2}\right)^{2}} d x \\
& =\int_{0}^{1} x \sqrt{1+\frac{9}{4} x} d x
\end{aligned}
$$

Substituting $u=1+\frac{9}{4} x$, and $d u=\frac{9}{4} d x$

$$
\begin{aligned}
& =\int_{u(0)}^{u(1)} \frac{4}{9}(u-1) \sqrt{u} \frac{4}{9} d u \\
& =\int_{u(0)}^{u(1)} \frac{16}{81}\left(u^{3 / 2}-u^{1 / 2}\right) d u \\
& =\left.\frac{16}{81}\left(\frac{2}{5} u^{5 / 2}-\frac{2}{3} u^{3 / 2}\right)\right|_{u(0)} ^{u(1)}
\end{aligned}
$$

If you got this far in the problem, you got full credit. Substituting back in $u(0)=1$, and $u(1)=1+\frac{9}{4}$

$$
=\frac{64+247 \sqrt{13}}{1215}
$$

