1. Astroid:

Last week on the homework, there was a problem that asked:
Calculate the length of the astroid of $x^{\frac{2}{3}}+y^{\frac{2}{3}}=2$.
Solution: We will find the arclength in the first quadrant, and then by symmetry we can take our solution and multiply by four. Using implicit differentiation,

$$
\frac{2}{3} x^{-\frac{1}{3}} d x+\frac{2}{3} y^{-\frac{1}{3}} d y=0
$$

Solving for y^{\prime} and squaring it (and substituting so the solution is in terms of x we have,

$$
\left(y^{\prime}\right)^{2}+1=\frac{2}{x^{\frac{2}{3}}}
$$

Therefore, the arclength (of one quarter) is given by

$$
\begin{aligned}
s & =\int_{0}^{2^{\frac{3}{2}}} \sqrt{\left(\left(y^{\prime}\right)^{2}+1\right)} d x \\
& =\int_{0}^{2^{\frac{3}{2}}} \frac{\sqrt{2}}{x^{\frac{1}{3}}} d x \\
& =\left.\sqrt{2} \frac{3 x^{\frac{2}{3}}}{2}\right|_{0} ^{2^{\frac{3}{2}}} \\
& =\frac{3}{2} \sqrt{2} \times 2=\frac{3}{2} 2^{\frac{3}{2}}
\end{aligned}
$$

Therefore, the total arclength is

