NAME:
Problem 1. Find the integral of

$$
\int \frac{e^{x}}{e^{2 x}+1} d x
$$

Solution:Make the substitution $e^{x}=u$, so $e^{x} d x=d u$ Then the integral becomes

$$
\int \frac{1}{u^{2}+1} d u
$$

which integrates to $\tan ^{-1}(u)+C$. Making a substitution back in yields

$$
\tan ^{-1}\left(e^{x}\right)+C
$$

Problem 2. Find the quadratic polynomial that fits the function

$$
f(x)=x \sin (\pi x)
$$

at $x=0, x=1$ and $x=1 / 2$. Then use this polynomial to approximate $\int_{0}^{1} x \sin (\pi x) d x$.
Solution:We plug in the values at $x=0, x=1$ and $x=1 / 2$.

$$
f(0)=0 \quad f(1 / 2)=1 / 2 \quad f(1)=0
$$

Now we will try to find a quadratic polynomial that fits this these three points. Let us use $P(x)=A x^{2}+$ $B x+C$.

$$
\begin{gathered}
0=P(0)=A(0)^{2}+B(0)+C \\
\frac{1}{2}=P(1 / 2)=A(1 / 2)^{2}+B(1 / 2)+C \\
0=P(1)=A(1)^{2}+B(1)+C
\end{gathered}
$$

This gives us that $C=0, \frac{A}{4}+\frac{B}{2}=\frac{1}{2}$ and $A+B=0$. Solving this system of linear equations (or squinting) will yield that $A=-2, B=2$, so

$$
P(x)=-2 x^{2}+2 x
$$

Integrating $P(x)$ from 0 to 1 gives us a final estimate

$$
\begin{aligned}
\int_{0}^{1} P(x) d x & =\int_{0}^{1}-2 x^{2}+2 x d x \\
& =\frac{-2 x^{3}}{3}+\left.\frac{2 x^{2}}{2}\right|_{0} ^{1} \\
& =\frac{1}{3}
\end{aligned}
$$

Problem 3. Compute the following integral

$$
\int \frac{-6-15 x+7 x^{2}+10 x^{3}}{-2 x-3 x^{2}+x^{4}} d x
$$

This one takes a bit of set up. First, we have to factor the bottom. We notice that right away we can pull out an x.

$$
x^{4}-3 x^{2}-2 x=x\left(x^{3}-3 x-2\right)
$$

At this point, you have to use your favorite method for factoring a cubic polynomial. If the polynomial has rational roots, then the polynomial will have roots at $\pm 1, \pm 2$. In this case, if you try +2 , it works, as $2^{3}-3 \cdot 2-2=8-6-2=0$. Now, you use polynomial long division (which I don't know how to type on a computer) to get

$$
=x(x-2)(x+2 x+1)
$$

The right hand side factors even further as

$$
=x(x-2)(x+1)^{2}
$$

Now comes the fun part: solving for coefficients. You write out

$$
\frac{A}{x}+\frac{B}{(x-2)}+\frac{C}{(x+1)}+\frac{D}{(x+1)^{2}}=\frac{-6-15 x+7 x^{2}+10 x^{3}}{-2 x-3 x^{2}+x^{4}}
$$

Cross multiplying and looking at the numerator gives us

$$
(\star) \quad A(x-2)(x+1)^{2}+B x(x+1)^{2}+C x(x-2)(x+1)+D x(x-2)=-6-15 x+7 x^{2}+10 x^{3}
$$

Wow, that looks scary. Let us try substituting in $x=0$ for (\star)

$$
\begin{aligned}
A(0-2)(0+1)+B(0)+C(0)+D(0) & =-6-15(0)+7(0)^{2}+10(0)^{3} \\
-2 A & =-6 \\
A & =3
\end{aligned}
$$

Not so bad. Now let us try substituting $x=2$ for (\star)

$$
\begin{aligned}
A(0)+B(2)(3)^{2}+C(0)+D(0) & =-6-15(2)+7(2)^{2}+10(2)^{3} \\
18 B & =72 \\
B & =4
\end{aligned}
$$

Two more to go. Let $x=-1$ for (\star)

$$
\begin{aligned}
A(0)+B(0)+C(0)+D(-1)(-1-2) & =-6-15(-1)+7(-1)^{2}+10(-1)^{3} \\
3 D & =6 \\
D & =2
\end{aligned}
$$

One last one. Now we will substitute $x=1$, but also in the values of A, B and D we have found so far.

$$
\begin{aligned}
A(1-2)(1+1)^{2}+B(1)(1+1)^{2}+C(1)(1-2)(1+1)+D(1)(1-2) & =-6-15(1)+7(1)^{2}+10(1)^{3} \\
-4 A+4 B-2 C-D & =-4 \\
-4(3)+4(4)-2 C-2 & =-4 \\
C & =3
\end{aligned}
$$

Great. Now all we have to do is integrate

$$
\begin{aligned}
\int \frac{A}{x}+\frac{B}{(x-2)}+\frac{C}{(x+1)}+\frac{D}{(x+1)^{2}} d x & =\int \frac{3}{x}+\frac{4}{(x-2)}+\frac{3}{(x+1)}+\frac{2}{(x+1)^{2}} d x \\
& =3 \ln |x|+4 \ln |x-2|+3 \ln |x+1|+\frac{2}{-(x+1)^{1}}+C
\end{aligned}
$$

