1. Problems to be presented on 9-13

(1) First problem for presentation
(a) Show that $\int_{0}^{\pi / 2} \sin ^{n} x d x=\frac{n-1}{n} \int_{0}^{\pi / 2} \sin ^{n-2} x d x$
(b) Use this to justify the following formulas

$$
\begin{aligned}
& \int_{0}^{\pi / 2} \sin ^{2 n+1} x d x=\frac{2 \cdot 4 \cdot 6 \cdot \ldots \cdot 2 n}{3 \cdot 5 \cdot 7 \cdot \cdots \cdot(2 n+1)} \\
& \int_{0}^{\pi / 2} \sin ^{2 n} x d x=\frac{1 \cdot 3 \cdot 5 \cdot \cdots \cdot(2 n-1)}{2 \cdot 4 \cdot 6 \cdot \ldots \cdot 2 n} \cdot \frac{\pi}{2}
\end{aligned}
$$

(2) Second Problem for Presentation: A torus is made by rotating the circle $x^{2}+(y-2 R)^{2}=R^{2}$ around the x axis. What is its volume?
(3) Third problem for presentation: We draw two disks, both of radius 1 , whose centers are distance 1 apart. What is area of their union?

