1. Partial Fraction Decomposition!

One thing that was always interesting to me was why do we almost always have a partial fraction decomposition for our problems. In general, the problem looks something like this: $\frac{f(x)}{g(x)}$. where f and g are polynomials, and the degree of f is less than the degree of g. We usually also assume that g factors into linear components, that is,

$$
g(x)=\left(x-a_{1}\right)\left(x-a_{2}\right)\left(x-a_{3}\right) \ldots\left(x-a_{n}\right)
$$

Where a_{i} are the roots of the polynomial g, and n is the degree of g. Then we might ask ourselves- why are there almost always constants $B_{1}, B_{2}, B_{3} \ldots B_{n}$ so that we have the equality

$$
\frac{f(x)}{g(x)}=\frac{B_{1}}{x-a_{1}}+\frac{B_{2}}{x-a_{2}}+\ldots+\frac{B_{n}}{x-a_{n}}
$$

Here is a little trick that can help you solve these problems a little bit faster, and provides an explicit formula for the B_{i}.

When we solve a Partial fraction decomposition problem, we usually cross multiply the denominators on our first step to finding eligible values for the B_{i}. This gives us a generally nasty looking equation:
$\frac{f(x)}{g(x)}=\frac{B_{1}\left(x-a_{2}\right)\left(x-a_{3}\right) \ldots\left(x-a_{n}\right)+B_{2}\left(x-a_{1}\right)\left(x-a_{3}\right) \ldots\left(x-a_{n}\right)+\ldots B_{n}\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n-1}\right)}{g(x)}$
On the next step of the problem we set the numerators for these two fractions to be equal. At this point, the equation we have is still pretty nasty looking:
$f(x)=B_{1}\left(x-a_{2}\right)\left(x-a_{3}\right) \ldots\left(x-a_{n}\right)+B_{2}\left(x-a_{1}\right)\left(x-a_{3}\right) \ldots\left(x-a_{n}\right)+\ldots B_{n}\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n-1}\right)$
Here, we have a little trick that we can do to simplify the problem immensely. What happens if we were to plug in a_{1} for x ? On the right side of the equation, all of the terms that have $\left(x-a_{1}\right)$ as an entry will disappear, leaving us with

$$
f\left(a_{1}\right)=B_{1}\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right)\left(a_{1}-a_{4}\right) \ldots\left(a_{1}-a_{n}\right)
$$

Similarly for the other B_{i} we could plug in a_{i} into the really nasty equation to get the equalities

$$
\begin{aligned}
f\left(a_{2}\right) & =B_{2}\left(a_{2}-a_{1}\right)\left(a_{2}-a_{3}\right)\left(a_{2}-a_{4}\right) \ldots\left(a_{2}-a_{n}\right) \\
f\left(a_{2}\right) & =B_{3}\left(a_{3}-a_{1}\right)\left(a_{3}-a_{2}\right)\left(a_{3}-a_{4}\right) \ldots\left(a_{3}-a_{n}\right) \\
& \vdots \\
f\left(a_{n}\right) & =B_{n}\left(a_{n}-a_{1}\right)\left(a_{n}-a_{2}\right)\left(a_{n}-a_{3}\right) \ldots\left(a_{n}-a_{n-1}\right)
\end{aligned}
$$

This gives us explicit formulas for the B_{i}, that is

$$
B_{i}=\frac{f\left(a_{i}\right)}{\left(a_{i}-a_{1}\right)\left(a_{i}-a_{2}\right) \ldots\left(a_{i}-a_{i-1}\right)\left(a_{i}-a_{i+1}\right) \ldots\left(a_{i}-a_{n}\right)}
$$

Notice in the denominator the term $\left(a_{i}-a_{i}\right)$ is missing. It would make no sense for that term to be there, because that would mean dividing by 0 !

Let us do a quick example to show that this method works. Let us try decompose

$$
\frac{4 x+1}{(x-2)(x-3)(x-4)}
$$

Using the method above, it should decompose as

$$
\frac{B_{1}}{x-2}+\frac{B_{2}}{x-3}+\frac{B_{2}}{x-4}
$$

Where

$$
\begin{aligned}
B_{1} & =\frac{4(2)+1}{(2-3)(2-4)}=\frac{9}{2} \\
B_{2} & =\frac{4(3)+1}{(3-2)(3-4)}=-13 \\
B_{2} & =\frac{4(4)+1}{(4-2)(4-3)}=\frac{17}{2}
\end{aligned}
$$

