## 1. Integration by Parts

Bonus: You are given a bucket that ways 10 kg , and it is filled with 201 of water. You are carrying it up Evans hall (50m), and it takes you 5 minutes to complete this task. During this time, the bucket is leaking at a rate of 2 liters per minute. How much work is required to carry the bucket up the stairs?
(1)

$$
\int \tan ^{-1} x d x
$$

Solution: Let $u=\tan ^{-1}(x)$, and $v=x$. The integration by parts gives us a

$$
x \tan ^{-1} x-\int \frac{x}{1+x^{2}} d x
$$

Making the substitution $u=x^{2}$ and $d u=2 x d x$ we arrive at

$$
\begin{gathered}
x \tan ^{-1} x-\int \frac{d u}{2(1+u)} d u \\
x \tan ^{-1} x-\frac{1}{2} \ln \left(1+x^{2}\right)+C
\end{gathered}
$$

(2) Compute the integral of $\int e^{x} \sin x d x$

Solution: . Integrate by parts. Let $u=\sin x$, and $d v=e^{x} d x$. Then

$$
\int e^{x} \sin x d x=e^{x} \sin x-\int e^{x} \cos x d x
$$

We repeat integration by parts on the second term, letting $u=\cos x$ and $d v=e^{x} d x$

$$
=e^{x} \sin x-\left(e^{x} \cos x-\int e^{x}(-\sin x) d x\right)+C
$$

Rearranging terms gives us

$$
\begin{gathered}
2 \int e^{x} \sin x d x=e^{x} \sin x-e^{x} \cos x+C \\
\int e^{x} \sin x d x=\frac{e^{x} \sin x-e^{x}}{2}+C
\end{gathered}
$$

A different way to do this problem is with complex numbers. We know that $e^{i x}=\cos x+i \sin x$. This means that

$$
\sin x=i\left(\frac{e^{i x}-e^{-i x}}{2}\right)
$$

We can therefore rewrite our integral as

$$
\begin{aligned}
\int e^{x} \sin x d x & =\int i e^{x}\left(\frac{e^{i x}-e^{-i x}}{2}\right) d x \\
& =\frac{i}{2} \int e^{x} e^{i x}-e^{x} e^{-i x} d x \\
& =\frac{i}{2} \int e^{(1+i) x}-e^{(1-i) x} d x \\
& =\frac{i}{2}\left(\frac{e^{(1+i) x}}{1+i}-\frac{e^{(1-i) x}}{1-i}\right) \\
& =\frac{i}{2}\left((1 / 2-i / 2) e^{(1+i) x}-(1 / 2+i / 2) e^{(1-i) x}\right) d x \\
& =\frac{i e^{x}}{2}\left((1 / 2-i / 2) e^{i x}-(1 / 2+i / 2) e^{-i x}\right)=\quad \frac{e^{x}}{2}(\sin x-\cos x)
\end{aligned}
$$

(3) Compute the indefinite integral of $\int \sin (\ln (x)) d x$

Solution: Let $x=e^{u}$, so $u=\ln x$ and $e^{u} d u=d x$. If we substitute this in the integral becomes

$$
\int \sin (\ln x) d x=\int e^{u} \sin u d u
$$

This is exactly the previous problem, which we know how to solve.
(4) if $f$ and $g$ are inverse functions and $f^{\prime}$ is continuous, prove that

$$
\int_{a}^{b} f(x) d x=b f(b)-a f(a)-\int_{f(a)}^{f(b)} g(y) d y
$$

## Solution:

$$
\int_{a}^{b} f(x) d x=\int_{a}^{b} 1 \cdot f(x) d x
$$

Letting $u=f(x)$ and $d v=d x$

$$
=b f(b)-a f(a)=\int_{a}^{b} x f^{\prime}(x) d x
$$

Using that $x=g(f(x))$

$$
=b f(b)-a f(a)=\int_{a}^{b} g(f(x)) f^{\prime}(x) d x
$$

Substituting $y=f(x)$ and $d y=f^{\prime}(x) d x$

$$
=b f(b)-a f(a) \int_{f(a)}^{f(b)} g(y) d y
$$

