1. Additional Review Problems!

(1) Using u substitution, find the integral of $\tan x$

Solution:

$$
\int \tan x d x=\int \frac{\sin x}{\cos x} d x
$$

Set $u=\cos x$, so that $d u=-\sin x d x$

$$
\begin{aligned}
& =\int \frac{-d u}{u} \\
& =-\ln |u|+C \\
& =-\ln |\cos x|+C
\end{aligned}
$$

(2)

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{\sqrt{n} \sqrt{n+1}}+\frac{1}{\sqrt{n} \sqrt{n+2}}+\ldots \frac{1}{\sqrt{n} \sqrt{n+n}}\right)
$$

Think the fundamental theorem of calculus!
Solution: We are going to massage the limit to make it a little better to look at. I'm going to use summation sign here.

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{\sqrt{n} \sqrt{n+k}}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{n} \cdot \frac{1}{\sqrt{1+k / n}}
$$

The right side is a Riemann sum - this is easier to see by setting $f(x)=\frac{1}{\sqrt{x}}$

$$
=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{f(1+k / n)}{n}
$$

Using the definition of the integral

$$
\begin{aligned}
& =\int_{1}^{2} f(x) d x \\
& =\int_{1}^{2} \frac{1}{\sqrt{x}} d x \\
& =\left.2 x^{1 / 2}\right|_{x=1} ^{2} \\
& =2(\sqrt{2}-1)
\end{aligned}
$$

(3) Compute the following limit

$$
\lim _{x \rightarrow 4} \frac{1}{x-4} \int_{4}^{x} \frac{e^{t}}{t} d t
$$

Solution: There were several good solutions to this one. (Thanks, Vincent and Taylor.) Here are a few:
(a) One way to think of $\frac{1}{x-4} \int_{4}^{x} \frac{e^{t}}{t} d t$ is the average value of $\frac{e^{t}}{t}$ between 4 and x. As the function $\frac{e^{t}}{t}$ is continuous at 4 , the average value of the function on the interval $[4, x]$ should tend to the value of the function at 4 as x goes to 4 . So the answer is $e^{4} / 4$
(b) You can also use L'Hopital rule for this one. Rewriting at

$$
\lim _{x \rightarrow 4} \frac{\int_{4}^{x} \frac{e^{t}}{t} d t}{x-4}
$$

The top of this fraction and bottom of this fraction are both differentiable, and go to 0 as x tends to 4 . We may use L'Hopital and get

$$
\lim _{x \rightarrow 4} \frac{\frac{d}{d x}\left(\int_{4}^{x} \frac{e^{t}}{t} d t\right)}{1}
$$

By the fundamental theorem of calculus, this is $e^{4} / 4$.
(c) Suppose that $F(t)$ is the anti-derivative of e^{t} / t. Then we can use the fundamental theorem of calculus and get

$$
\lim _{x \rightarrow 4} \frac{1}{x-4} \int_{4}^{x} \frac{e^{t}}{t} d t=\lim _{x \rightarrow 4} \frac{F(x)-F(4)}{x-4}
$$

The right hand side is the definition of the derivative of F at 4

$$
\begin{aligned}
& =F^{\prime}(4) \\
& =e^{4} / 4
\end{aligned}
$$

(4) Japanese Napkin Ring Theorem.

Solution: Wikipedia has a good write up of this problem, so I will leave it to them. Google : "Japanese Napkin Ring Theorem" and look it up!

If you want additional problems to review, try these two:
(5) Assume a snowball melts so that its volume decreases at a rate proportional to its surface area. If it takes 3 hours for the snowball to decrease to half its original volume, how much longer will it take for the snowball to melt completely
(6) Dart Board Probability Problem: Suppose that I am throwing darts at a dart board of radius 1. The score that I get when I hit the board is equal to $1-x$, where x is the distance from the center of the board to where my dart landed. So if I make a bullseye, I get 1 point. If I hit the rim, I get zero points. What is my average score?

