MATH N55 HOMEWORK 5 DUE FRIDAY, JULY 12TH

Do the following problems in Rosen.

Section 4.4: 6, 8, 10, 12, 13, 16, 26, 34

CHALLENGE (NOT TO BE HANDED IN)

Find a polynomial f(x) with integer coefficients which has roots in \mathbb{Z}/p for all primes p, but which does not have any roots in \mathbb{Z} . More precisely, find an f(x) such that for all p, there exists an $a \in \mathbb{Z}$ such that $f(a) \equiv 0 \pmod{p}$, does there does not exist any $a \in \mathbb{Z}$ such that f(a) = 0. Possible hint: you may use the results from exercises 61–63 in section 4.4 without proving them.

Going Further. Borrowing language from geometry, number theorists would say that f(x) has roots "locally," but not "globally." Theorems which relate solutions in \mathbb{Z} or \mathbb{Q} to solutions modulo each p are called "local-to-global principals."

The language comes from a deep analogy with geometry, where prime numbers correspond to "points" and integers correspond to "functions." As a familiar starting point: every nonzero polynomial function g(x) on \mathbb{C} factors uniquely into terms of the form x - a, for points $a \in \mathbb{C}$ where g(a) = 0. Every nonzero integer n factors uniquely into primes p, where $n \equiv 0 \pmod{p}$. The full story involves the closely related subjects of *commutative algebra* and *algebraic geometry*.