SOLUTIONS FOR MATH 1B WEEK 8, TUESDAY

Exercise 1. Use the ratio test.
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Thus the series converges.

Exercise 2. Use the ratio test.
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% Exercise 3. Use the ratio test.
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Thus the series diverges.

Exercise 4. This can be re-written as a geometric series in §. Thus it converges iff |z/4] < 1,
or equivalently, |z| < 4. This corresponds to the interval (—4,4).

Exercise 5. Use the ratio test.
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Thus if |z| < 1, we have convergence and if |z| > 1, we have divergence. At |z| = 1, we
check by plugging in:
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Both of these series diverge since the general term does not tend to zero. Thus the series
converges on (—1,1).

% Exercise 6. Intuitively, this looks like "— === . Indeed, we have

1
(n” )é —lim—n+ ~1

n—oo N2

5

ngg> 1/n

So by the limit comparison test, our series converges iff ) nz—l,Q does. By the p-series test,
this converges iff x — 2 > 1, or equivalently if = > 3. Thus this series converges on (3, 00).

Remark: Series of the form ) 22 are called Dirichlet series. The most famous example of

such a series is the Riemann zeta function ((s) = > 0", ==



