MATH 1B WEEK 8, THURSDAY

Exercise 1. Find a power series for $\frac{x}{x+2}$, around x = 0. For what values of x is it valid?

Exercise 2. Find a power series expansion for $\ln(1+x)$, valid for |x| < 1. (*Hint:* First show that $\ln(1+x) = \int_0^x \frac{1}{t+1} dt$.)

Exercise 3. The previous exercise gives a series for $\ln(1+x)$ on the interval (0,2), but it turns out that the same series works on $(0,2]^1$. Using this fact, compute $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\cdots$.

¹This is a consequence of Abel's Theorem on power series, which we will not cover

Exercise 4. Write down a power $f(x) = \sum_{n=0}^{\infty} a_n x^n$ with the following properties:

- (1) f'(x) = f(x) for all x.
- (2) f(0) = 1.

We won't prove it today, but it this property completely determines f. In particular, if another function has this property, it *is* this series.