SOLUTIONS FOR MATH 1B WEEK 8, THURSDAY

Exercise 1.
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This is valid for |2| < 1, or equivalently |z| < 2.

Exercise 2. Since -t In(z + 1) = -1 and In(1) = 0, we have
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Exercise 3. The series we want is y (_17):71, which is exactly the series above evaluated
at x = 1. Thus
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Exercise 4. We have f(0) = ag, so condition (2) forces us to pick ag = 1. For the rest,
recall what a derivative does to the coefficients of a power series:
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We want to find values of a,, which makes this again equal to the original series, to satisfy
condition (1). That is, we need
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Continuing in this pattern leads us to guess f(z) = >_° / Lz". Using the ratio test, one can

verify that this converges for all x, so this is a well-defined function. We have f(0) = é =1,
and further,

f(z) = Z% Y Z ﬁx“ = Z %xm = f(2).
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Thus, f satisfies both conditions.

Remark: If you haven’t seen a satisfying definition of what a’ should mean for irrational
b, or of what the number e is, you can take this series to be the definition of the function e*.
The fact that this function has the familiar properties of exponentiation, and has an inverse,
Inx, can be proved from (1) and (2) alone (try it if you're bored!).



