
SOLUTIONS FOR MATH 1B WEEK 7, TUESDAY

Exercise 1. Re-write the sum as

1− 1

3
+

1

5
− 1

7
+

1

9
− · · · =

∞∑
n=0

(−1)n
1

2n+ 1
.

Then since 1
2n+1

is positive, decreasing, and tends to 0, we can apply the alternating series
test to show this converges.

Exercise 2. Ignoring everything but the leading terms, this looks like 1
n2 , which we know

converges. Make this precise by using the limit comparison test:

lim
n→∞

1/(n+ 1)(n− 1)

1/n2
= lim

n→∞

n

n+ 1
· n

n− 1
= 1.

Since
∑∞

n=2
1
n2 converges, so does

∑∞
n=2

1
(n+1)(n−1) .

Exercise 3. For small values of x, recall that sinx ≈ x, and so for large values of n,
sin
(
1
n

)
≈ 1

n
. Make this precise using the limit comparison test:

lim
n→∞

sin
(
1
n

)
1
n

= lim
x→0

sinx

x
= 1.

Since
∑∞

n=1
1
n

does not converge, neither does
∑∞

n=1 sin
(
1
n

)
.

Exercise 4. This looks like an alternating series, but if you try to apply the alternating

series test it will fail, because 1+cos(πn)
n

oscillates, so it is not eventually decreasing. Thus we
need to use other methods to determine if this series converges.

Writing out the first few terms gives

∞∑
n=1

(−1)n−1
1 + cos(πn)

n
= 0− 1 + 0− 1

2
+ 0− 1

3
+ 0− 1

4
+ · · ·

so it looks like every odd term is 0 and every even term is − 2
n
. This holds for more generally

for n, since cos(πn) is −1 for n odd and 1 for n even. It is clear that the 2N -th partial sum
of this series is the negative of the N -th partial sum of the harmonic series. We know the
partial sums of the harmonic series tend to∞, so the partial sums of this series tend to −∞,
meaning it diverges.

Exercise 5. (Remark: The solution to this exercise, suitably generalized, is why the ratio
test works. If you just are concerned with doing this exercise quickly, e.g. on an exam, just
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use the ratio test like on week 8’s worksheet.) We have

∞∑
n=0

2n

n!
=

1

1
+

2

1
+

2 · 2
1 · 2

+
2 · 2 · 2
1 · 2 · 3

+
2 · 2 · 2 · 2
1 · 2 · 3 · 4

+ · · ·+

n times︷ ︸︸ ︷
2 · · · 2
1 · · ·n

+ · · ·

Notice that each term is the previous, multiplied by 2
n
. This is eventually < 1. More

precisely, for n ≥ 3, we have 2
n
≤ 2

3
< 1, and so

an =
2 · 2 ·

n−2 times︷ ︸︸ ︷
2 · 2 · · · 2

1 · 2 · 3 · 4 · · ·n
≤ 2 · 2

1 · 2

(
2

3

)n−2
Since

∑∞
n=0 2

(
2
3

)n−2
is a geometric series with ratio < 1, it converges. By the comparison

test, our original series converges as well.

Exercise 6. We want to apply the alternating series test. To do this, we need to show

an :=
1 · 3 · 5 · · · (2n− 3)

2nn!
is positive, decreasing, and tends to 0. That it is positive is clear. To show it is decreasing,
notice that each term is 2n−3

2n
times the previous. Since 2n−3

2n
< 2n

2n
= 1, each term is strictly

smaller than the previous. To show it tends to zero, pair up terms:

an =

n−1 factors︷ ︸︸ ︷
1 · 3 · 5 · · · (2n− 3)

2 · 2 · 2 · · · 2︸ ︷︷ ︸
n factors

· 1 · 2 · 3 · · ·n︸ ︷︷ ︸
n factors

=

n−1 factors, all <1︷ ︸︸ ︷
1

2
· 3

4
· 5

6
· · · 2n− 3

2n− 2
· 1

2n
≤ 1

2n
→ 0.

Since all the hypotheses of the alternating series test are satisfied, this series converges.


