SOLUTIONS FROM MATH 1B WEEK 4, TUESDAY

Exercise 1.
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Exercise 2. One could compute this limit out using a trig substitution. However, right away
we can notice that this should diverge. Intuitively, as x gets very large, V1 + 22 behaves
o0

like V22 = z, and so the integrand behaves like /& = x. Since we know xdz should
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diverge, so should our integral.
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diverges. (Note the different bound.) For x > 1, we have 22> 1, and so 1 + 22 < 22 4+ 2? =
222. Thus
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To make this precise, we use a comparison test. It is sufficient to show that /
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Since / ——dx diverges, so does our original integral.
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Exercise 3.
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Exercise 4.
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Exercise 5.
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So the integral diverges.
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Alternatively, notice that for z > e, we have Inz > 1 and so > —. Since we already
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know / —dx diverges, this integral must diverge.
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Exercise 6.
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So the integral diverges.



