
SOLUTIONS FOR MATH 1B WEEK 3, TUESDAY

Exercise 1. Let x = 3 sin θ for θ ∈ (−π/2, π/2). Then dx = 3 cos θdθ.∫
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Exercise 2. Let x = a tan θ, for θ ∈ (−π/2, π/2). Then dx = a sec2 θdθ. Further, let
u = sin θ. ∫ a
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Exercise 3. The polynomial in the denominator has discriminant 22 − 4 · 5 = −16. Since
this is negative, we will not be able to factor it, so we should complete the square. Let
u = x+ 1, so du = dx and∫

dx√
x2 + 2x+ 5

=

∫
dx√

(x+ 1)2 + 4
=
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du√
u2 + 4
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Now do a trig sub with u = 2 tan θ, so du = 2 sec2 θdθ. Use the domain θ ∈ (−π/2, π/2), so
that tan θ ranges over all real numbers and sec θ is positive. We get

∫
2 sec2 θdθ√
4 tan2 θ + 4

=

∫
2 sec2 θdθ

2 sec θ

=

∫
sec θdθ

= ln | sec θ + tan θ|+ C

To substitute back into u and then x, use the following two facts: (Note we don’t run into
issues with the square root on the second one since sec θ is positive on (−π/2, π/2).)
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√
1− tan2 θ =

√
1− 1

4
u2 =

√
1− 1

4
(x+ 1)2

This gives

ln|sec θ + tan θ|+ C = ln

∣∣∣∣∣12(x+ 1) +

√
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4
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∣∣∣∣∣+ C.

Exercise 4. This one should have been

∫
x
√
1− x4dx. In that case, it would be easy to

substitute u = x2 so the problem becomes
1

2

∫ √
1− u2du and then use a trig sub. Without

it, this is actually a very tricky integral and can’t be solved using methods we’ve used so far.

Exercise 5. Set u = x2 − 7, so du = 2xdx. Then

∫
x√

x2 − 7
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=
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Always remember to try easier methods, like u-substitution, before more time-consuming
ones!
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Exercise 6. Let x = tan θ, and use the domain θ ∈ (−π/2, π/2). Then dx = sec2 θdθ. Since
tan 0 = 0 and tan(π/4) = 1, We have∫ 1
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Exercise 7. Let t = 2 tan θ, so dt = 2 sec2 θdθ. Use the domain θ ∈ (−π/2, π/2). On this
interval, note that sec θ is positive. Since 2 tan 0 = 0 and 2 tan(π/4) = 2, we have∫ 2
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