
MATH 1B WEEK 1 SOLUTIONS

Exercise 1.
d

dx
(x2 + sin(2x)) = 2x + 2 cosx

Exercise 2.
d

dx
(ln(2x) tan(2x)) =

1

x
tan(2x) + ln(2x) sec2(2x)2x(ln 2)

Exercise 3. First compute
d

dx
xx. Let y = xx, so ln y = ln(xx) = x lnx. Differentiating both

sides with respect to x gives
1

y

dy

dx
= lnx+1. Thus

dy

dx
= y(lnx+1) = xx(lnx+1). Applying

this and using the chain rule, we get
d

dx
sec
(
ex

x)
= sec

(
ex

x)
tan
(
ex

x)
ex

x

xx(lnx + 1).

Exercise 4. lim
x→∞

3x2 + x− 1

3x− 1
= lim

x→∞

3x + 1− 1
x

3− 1
x

. The denominator approaches 3 and the

numerator approaches +∞, so the limit is +∞. (Compare with the “cross out all but the
highest degree term” method, or with using L’Hôspital’s rule.)

Exercise 5. lim
x→0

xx = lim
x→0

ex lnx. We first compute lim
x→0

x lnx = lim
x→0

lnx

x−1
. By L’Hôspital’s

rule, this is lim
x→0

x−1

−x−2
= lim

x→0
−x = 0. Then since ex is a continuous function of x, we have

lim
x→0

ex lnx = e0 = 1.

Exercise 6. Use u-substitution. Let u = x2 + 1, so du = 2xdx. Then

∫
2x

x2 + 1
dx =∫

1

u
du = ln |u|+ C = ln |x2 + 1|+ C.

Exercise 7. Use u-substitution. Let u = 5x + 10, so x =
1

5
u− 2 and dx =

1

5
du. Then

∫
x
√

5x + 10dx =

∫ (
1

5
u− 2

)√
u

1

5
du

=
1

25

∫
u3/2du +

2

5
u1/2du

=
2

125
u5/2 +

4

15
u3/2 + C

=
2

125
(5x + 10)5/2 +

4

15
(5x + 10)3/2 + C

1
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Exercise 8. Use u-substitution. Let u = lnx, so du =
1

x
dx. Then∫ e2

e

1

x lnx
dx =

∫ 2

1

1

u
du

= lnu|21 = ln 2− ln 1 = ln 2

(Remember that when you do a u-substitution on a definite integral, you need to change the
bounds! Since u = lnx, we have e 7→ 1 and e2 7→ 2.)

Exercise 9. Use integration by parts. Let u = x and dv = e2xdx. Then du = dx and

v =
1

2
e2x. Putting this together,∫

xe2xdx =
1

2
xe2x −

∫
1

2
e2xdx

=
1

2
xe2x − 1

4
e2x + C

Exercise 10. First, use log properties to make the simplification

∫
ln
√
xdx =

1

2

∫
lnxdx.

Now integrate by parts. Let u = lnx and dv = dx, so du =
1

x
dx and v = x. Then

1

2

∫
lnxdx =

1

2

(
x lnx−

∫
x

1

x
dx

)
=

1

2
(x lnx− x) + C

Exercise 11. Use integration by parts repeatedly. First, let u = x3 + 2x + 4, dv =
sinxdx, du = 3x2 + 2, v = − cosx. Then∫

(x3 + 2x + 4) sinx dx = −(x3 + 2x + 4) cosx +

∫
(3x2 + 2) cosxdx

Next, u = 3x2 + 2, dv = cosxdx, du = 6xdx, v = sinx, so∫
(3x2 + 2) cosxdx = (3x2 + 2) sinx− 6

∫
x sinxdx

Last, u = x, dv = sinxdx, du = dx, v = − cosx, so∫
x sinxdx = −x cosx +

∫
cosxdx = −x cosx + sinx + C

Putting it all together gives∫
(x3 + 2x + 4) sinx dx = −(x3 + 2x + 4) cosx + (3x2 + 2) sinx + 6x cosx− 6 sinx

Exercise 12. Integrate by parts, taking u = P (x) and dv = exdx, so du = P ′(x) and v = ex.
Thus ∫

P (x)exdx = P (x)ex −
∫

P ′(x)ex
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Repeating this process on the new integral, we get∫
P (x)exdx = P (x)ex−P ′(x)ex+P ′′(x)ex−· · ·+(−1)nP (n)(x)ex+(−1)n+1

∫
P (n+1)(x)exdx

where P (n)(x) denotes the nth derivative of P (x). By repeating the integration by parts more
and more times, one can see this equation holds for any positive integer n. In particular if
n is the degree of P (x), then we will have P (n+1)(x) = 0, so the last term will be zero, so∫

P (x)exdx = P (x)ex − P ′(x)ex + P ′′(x)ex − · · ·+ (−1)nP (n)(x)ex

If we repeat essentially the same argument with ex replaced by sin x, we see that∫
P (x) sinxdx = −P (x) cosx +

∫
P ′(x) cosxdx

= −P (x) cosx + P ′(x) sinx−
∫

P ′′(x) sinxdx

= −P (x) cosx + P ′(x) sinx + P ′′(x) cosx +

∫
P ′′′(x) cosxdx

...

Each four terms will cycle through one of − cosx, sinx, cosx,− sinx, in that order. If n is
the degree of the polynomial, then we will have P (n+1)(x) = 0, and so the procedure can
stop.

If instead of sin x we started with cosx, the same pattern would emerge, except the terms
would go in the order sin x, cosx,− sinx,− cosx.


