
SOLUTIONS FOR MATH 1B WEEK 6, THURSDAY

Exercise 1. The sequence does converge. Indeed,

lim
n→∞

3n7−n = lim
n→∞

(
3

7

)n

= 0

since |3
7
| < 1. Thus the sequence converges to zero. (I want to make this clear: it converges

because the limit exists. The fact that it’s 0 and not some other number is a coincidence.)

Exercise 2. This sequence converges. First compute

lim
n→∞

n

n+ 1
= 1.

Then since the function f(x) = cos(πx) is continuous at x = 1, we have

lim
n→∞

cos

(
nπ

n+ 1

)
= cos

(
π lim

n→∞

n

n+ 1

)
= cosπ = −1.

Exercise 3. The first step to solving this is to write down a rule for an without any “. . . ”
Although it may be hard to write one directly, we can define an recursively, by a1 =

√
2 and

an =
√

2an−1 for n > 1.
We can write the first few terms as 21/2, 23/4, 27/8, . . .. This leads us to think about the

sequence of exponents. To make this precise, let bn = log2 an. Translating the rules above,
we have b1 = 1

2
and bn = 1

2
(1 + bn−1) for n > 1. Intuitively, we are repeatedly taking the

average of bn with 1, so this should converge to 1. More precisely, notice that

b1 =
1

2

b2 =
1

2

(
1 +

1

2

)
=

1

2
+

1

4

b3 =
1

2

(
1 +

1

2
+

1

4

)
=

1

2
+

1

4
+

1

8

bn =
1

2
+

1

4
+ · · ·+ 1

2n
.

This is a geometric series, for which we have a nice formula:

lim
n→∞

bn =
∞∑
n=1

1

2n
=

1

2

1

1− 1
2

= 1

Now we translate this back to the limit of the an’s. By how we defined bn, we have an = 2bn .
Since f(x) = 2x is a continuous function,

lim
n→∞

an = 2limn→∞ bn = 21 = 2

1



2 SOLUTIONS FOR MATH 1B WEEK 6, THURSDAY

(Remark : The argument “averaging with 1 repeatedly should converge to 1” can be made
precise by the contraction mapping principal. Loosely speaking, it says that if a function
f “brings numbers closer together,” then there is a unique number x such that f(x) = x,
and that any sequence of the form {a, f(a), f(f(a)), f(f(f(a))), . . .} converges to x. This is
an important theorem in analysis which, perhaps unsurprisingly, is proved using a similar
geometric series.)

Exercise 4.

(1) Use log properties to get a telescoping series:

N∑
n=1

ln
n

n+ 1
=

N∑
n=1

lnn− ln(n+ 1) = ln 1− ln(N + 1)

As N →∞, this goes to −∞. Thus the series diverges.
(2) Factor n3−n = n(n+1)(n−1). Use a partial fraction decomposition to get a different

sort of telescoping series, where all but the first two and last two terms cancel:

N∑
n=2

1

n3 − n
=

N∑
n=2

(
−1

n
+

1

2

1

n+ 1
+

1

2

1

n− 1

)
=

1

2
− 1

4
− 1

2

1

N
+

1

2

1

N + 1

As N →∞, this converges to 1
4
.

Exercise 5. Let f(x) = x2e−x
3
. It is clear that f is positive and continuous. To check if it

is decreasing, take the first derivative:

f ′(x) = 2xe−x
3 − 3x4e−x

3

= x(2− 3x3)e−x
3

This is negative whenever x ≥ 3
√

2/3, so f is eventually decreasing. (Recall that we can
change lower bounds without changing convergence, so “eventually decreasing” is always
good enough.) Thus we can apply the integral test. We have∫ ∞

1

x2e−x
3

dx = lim
a→∞

(
−1

3
e−a

3

+
1

3
e1
)

=
e

3
.

This means the sum converges.

Exercise 6. Let A be the area of the starting triangle. (We’ll compute this at the end, but
for now it will just make things messier.) On the first step, the new triangles we add have
side lengths scaled down by 1/3, so they have area A/32 = A/9. On the n-th step, they have
sides scaled by 1/3n, so the area of each is A/9n.

Now we have to figure out how many triangles are added on each step, which means we
have to know how many sides there are. We start with three sides. After each step, a single
side is broken up into 4 sides, so the number of sides multiplies by 4. Thus the number of
triangles added on the n-th step is 3 · 4n−1.

Thus the total area is

A+ 3
A

9
+ 3 · 4 · A

92
+ 3 · 42 · A

93
+ · · · = A+

3A

9

∞∑
n=0

(
4

9

)n

= A+
3A

9

1

1− 4
9

=
8

5
A.
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Using some high-school geometry, the area of the starting triangle is
√
3
4

, so the total area is
2
√
3

5
.

Exercise 7. From the previous exercise, we know that the number of sides after n steps is
3 · 4n. The side lengths start as 1, and scale down by 1/3 after each step, so the length of
the sides after n steps is 1/3n. Thus the perimeter after n steps is

P (n) = 3 · 4n · 1

3n
= 3 ·

(
4

3

)n

Since 4
3
> 1, this blows up to infinity as n → ∞. We conclude that although the Koch

snowflake has finite area, its perimeter is infinite. (You could shade in a picture of one with
only a modest amount of paint, but not even with all the paint in the universe could you
draw its outline!)


