A conjugate system for twisted Araki-Woods algebras of finite dimensional spaces

Zhiyuan Yang

Texas A&M University

October 16, 2023

Plan of the talk

- ▶ Recall the construction of Twisted Araki-Woods algebras $\mathcal{L}_T(H)$ and seperability of the vacuum state [da Silva, Lechner 22']
- ▶ Brief review of conjugate variables and free fisher information
- Explain how to concretely compute the conjugate system for $\mathcal{L}_T(H)$: Wick formula
- Some consequences: factoriality, free monotone transport.

Fock spaces and Commutation relations

 \mathcal{H} a complex Hilbert space.

Consider the symmetric, antisymmetric, and full Fock space

$$\mathcal{F}_{F}(\mathcal{H}) = \bigoplus_{n=0}^{\infty} \otimes_{sym}^{n} \mathcal{H}, \quad \mathcal{F}_{-F}(\mathcal{H}) = \bigoplus_{n=0}^{\infty} \Lambda^{n} \mathcal{H}, \quad \mathcal{F}_{0}(\mathcal{H}) = \bigoplus_{n=0}^{\infty} \otimes^{n} \mathcal{H}$$

Fock spaces and Commutation relations

 ${\cal H}$ a complex Hilbert space.

Consider the symmetric, antisymmetric, and full Fock space

$$\mathcal{F}_{F}(\mathcal{H}) = \bigoplus_{n=0}^{\infty} \otimes_{\text{sym}}^{n} \mathcal{H}, \quad \mathcal{F}_{-F}(\mathcal{H}) = \bigoplus_{n=0}^{\infty} \Lambda^{n} \mathcal{H}, \quad \mathcal{F}_{0}(\mathcal{H}) = \bigoplus_{n=0}^{\infty} \otimes^{n} \mathcal{H}$$

▶ The creation operator $a^*(f): g_1 \otimes \cdots \otimes g_n \to f \otimes g_1 \otimes \cdots \otimes g_n$, and its adjoint a(f) (annihilation operator) satisfies the Bosonic and Fermion commutation relations

$$a_F(f)a_F^*(g)-a_F^*(g)a_F(f)=\langle f,g\rangle,\quad a_{-F}(f)a_{-F}^*(g)+a_{-F}^*(g)a_{-F}(f)=\langle f,g\rangle,\quad \forall f,g\in\mathcal{H},$$

and for the full Fock space $a(f)a^*(g) = a(f)a^*(g) + {0 \choose 0}a^*(g)a(f) = \langle f,g \rangle$.

Fock spaces and Commutation relations

 \mathcal{H} a complex Hilbert space.

Consider the symmetric, antisymmetric, and full Fock space

$$\mathcal{F}_{F}(\mathcal{H}) = \bigoplus_{n=0}^{\infty} \otimes_{sym}^{n} \mathcal{H}, \quad \mathcal{F}_{-F}(\mathcal{H}) = \bigoplus_{n=0}^{\infty} \Lambda^{n} \mathcal{H}, \quad \mathcal{F}_{0}(\mathcal{H}) = \bigoplus_{n=0}^{\infty} \otimes^{n} \mathcal{H}$$

▶ The creation operator $a^*(f): g_1 \otimes \cdots \otimes g_n \to f \otimes g_1 \otimes \cdots \otimes g_n$, and its adjoint a(f) (annihilation operator) satisfies the Bosonic and Fermion commutation relations

$$a_F(f)a_F^*(g)-a_F^*(g)a_F(f)=\langle f,g\rangle,\quad a_{-F}(f)a_{-F}^*(g)+a_{-F}^*(g)a_{-F}(f)=\langle f,g\rangle,\quad \forall f,g\in\mathcal{H},$$

and for the full Fock space $a(f)a^*(g) = a(f)a^*(g) + \frac{0}{0}a^*(g)a(f) = \langle f,g \rangle$.

lacktriangle Bożejko and Speicher considered the q-commutation relation $(-1 \le q \le 1)$

$$a(f)a^*(g) - qa^*(f)a(g) = \langle f, g \rangle,$$

and showed that it can be realized as the creation and annihilation operators on the q-Fock space $\mathcal{F}_{qF}(\mathcal{H})$.

q and twisted Fock space

▶ F the tensor flip $F(f \otimes g) = g \otimes f$ and T = qF, denote

$$T_k = 1^{k-1} \otimes T \otimes 1^{n-k-1} \in \mathcal{B}(\mathcal{H}^{\otimes n}).$$

▶ Kernel: $P_{T,n} = \sum_{\sigma \in S_n} \Psi_T(\sigma) \in \mathcal{B}(\mathcal{H}^{\otimes n})$ with $\Psi_T(\sigma) : S_n \to \mathcal{B}(\mathcal{H}^{\otimes n})$ be the quasi-multiplicative map (w.r.t the Cayley graph)

$$\Psi_T((12)(45)) = T_1 T_4, \quad \Psi_T((123)) = \Psi_T((12)(23)) = T_1 T_2.$$

- $T = qF, \ P_{T,n}(\xi_1 \otimes \cdots \otimes \xi_n) = \sum_{\sigma \in S_n} q^{\mathsf{inv}(\sigma)} \xi_{\sigma(1)} \otimes \cdots \otimes \xi_{\sigma(n)}.$
- Alternatively, we can also define recursively

$$R_{T,n} := 1 + T_1 + T_1 T_2 + \dots + T_1 \dots T_{n-1},$$

 $P_{T,1} := R_{T,1}, \quad P_{T,n} := (1 \otimes P_{T,n-1}) R_{T,n}.$

Let $\mathcal{H}_{T,n}$ be the closure of $(\mathcal{H}^{\otimes n}, \langle \cdot, P_{T,n} \cdot \rangle)$, (possibly module off the kernel), then the q-Fock space (or in general T-twisted Fock space) is

$$\mathcal{F}_T(\mathcal{H}) := \bigoplus_{n=0}^\infty (\mathcal{H}^{\otimes n}, \langle \cdot, P_{T,n} \cdot \rangle)^- = \bigoplus_{n=0}^\infty \mathcal{H}_{T,n}.$$

Positivity of $P_{T,n}$

To define $\mathcal{F}_{\mathcal{T}}(\mathcal{H})$, we need the **positivity** of $P_{\mathcal{T},n}$ for $n \geq 1$ which is nontrivial even for $\mathcal{T} = q\mathcal{F}$.

Theorem

Bożejko, Speicher'94 If T satisfies Yang-Baxter eq.

$$T_1 T_2 T_1 = T_2 T_1 T_2$$

and $||T|| \le 1$ (||T|| < 1) then for all $n \ge 0$, $P_{T,n} \ge 0$ ($P_{T,n} > 0$).

Definition

 $T = T^* \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H})$ is

- ▶ a twist: $P_{T,n} \ge 0$, $\forall n \ge 1$.
- ▶ a strict twist: $P_{T,n} > 0$, $\forall n \ge 1$.

▶ T a twist. Left field operator on $\mathcal{F}_T(\mathcal{H})$:

$$X_T(f) := a_T(f) + a_T^*(f), \quad \forall f \in \mathcal{H}.$$

▶ T a twist. Left field operator on $\mathcal{F}_T(\mathcal{H})$:

$$X_T(f) := a_T(f) + a_T^*(f), \quad \forall f \in \mathcal{H}.$$

▶ $a_T(f)$: conjugate linear, $a_T^*(f)$: linear, so $2a_T^*(f) = X_T(f) - iX_T(if)$, and $\{X_T(f): f \in \mathcal{H}\}'' = \{a_T^*(f): f \in \mathcal{H}\}'' = B(\mathcal{F}_T(\mathcal{H}))$.

▶ T a twist. Left field operator on $\mathcal{F}_T(\mathcal{H})$:

$$X_T(f) := a_T(f) + a_T^*(f), \quad \forall f \in \mathcal{H}.$$

- ▶ $a_T(f)$: conjugate linear, $a_T^*(f)$: linear, so $2a_T^*(f) = X_T(f) iX_T(if)$, and $\{X_T(f) : f \in \mathcal{H}\}'' = \{a_T^*(f) : f \in \mathcal{H}\}'' = B(\mathcal{F}_T(\mathcal{H}))$.
- ▶ Want $\Omega \in \mathcal{H}_{T,0} = \mathbb{C}\Omega$ to be standard (cyclic and separating), therefore we only take 'half' of the vectors:

$$\mathcal{L}_T(H) := \{X_T(f) : f \in H\}'', \quad H \subset \mathcal{H} \text{ a standard real subspace.}$$

▶ T a twist. Left field operator on $\mathcal{F}_T(\mathcal{H})$:

$$X_T(f) := a_T(f) + a_T^*(f), \quad \forall f \in \mathcal{H}.$$

- ▶ $a_T(f)$: conjugate linear, $a_T^*(f)$: linear, so $2a_T^*(f) = X_T(f) iX_T(if)$, and $\{X_T(f): f \in \mathcal{H}\}'' = \{a_T^*(f): f \in \mathcal{H}\}'' = B(\mathcal{F}_T(\mathcal{H}))$.
- ▶ Want $\Omega \in \mathcal{H}_{T,0} = \mathbb{C}\Omega$ to be standard (cyclic and separating), therefore we only take 'half' of the vectors:

$$\mathcal{L}_T(H) := \{X_T(f) : f \in H\}'', \quad H \subset \mathcal{H} \text{ a standard real subspace.}$$

For standard H, it is more convenient to write

$$X_T(f) := a_T(S_H f) + a_T^*(f), \quad f \in H + iH$$

Definition

For a **standard** (real) subspace $H \subseteq \mathcal{H}$, and a twist $T \in B(\mathcal{H} \otimes \mathcal{H})_{s.a.}$, the T-twisted Araki-Woods algebra is $\mathcal{L}_T(H) := \{X_T(f) : f \in H\}_{s.a.}^n$.

Standard subspace

Definition

A real linear subspace $H \subseteq \mathcal{H}$ is a **standard** subspace if

- ▶ H is a closed real subspace of $(\mathcal{H}, Re\langle \cdot, \cdot \rangle)$.
- ▶ H is cyclic: H + iH is dense in \mathcal{H} .
- ▶ H is separating: $H \cap iH = \{0\}$.

Standard subspace

Definition

A real linear subspace $H \subseteq \mathcal{H}$ is a **standard** subspace if

- ▶ *H* is a closed real subspace of $(\mathcal{H}, Re\langle \cdot, \cdot \rangle)$.
- \blacktriangleright *H* is cyclic: H + iH is dense in \mathcal{H} .
- ▶ H is separating: $H \cap iH = \{0\}$.

Example

1) $\mathbb{R}^n \subseteq \mathbb{C}^n$; 2) (M,\mathcal{H}) von Neumann algebra with an vector state $\varphi = \langle \xi, \cdot \xi \rangle$, then $H = \overline{M_{s.a.\xi}}^\mathbb{R}$ is cyclic (separating) iff ξ is cyclic (separating) for M. (\mathcal{H} is called the standard representation if both holds.)

Standard subspace

Definition

A real linear subspace $H \subseteq \mathcal{H}$ is a **standard** subspace if

- ▶ *H* is a closed real subspace of $(\mathcal{H}, Re\langle \cdot, \cdot \rangle)$.
- \blacktriangleright *H* is cyclic: H + iH is dense in \mathcal{H} .
- ▶ H is separating: $H \cap iH = \{0\}$.

Example

1) $\mathbb{R}^n \subseteq \mathbb{C}^n$; 2) (M,\mathcal{H}) von Neumann algebra with an vector state $\varphi = \langle \xi, \cdot \xi \rangle$, then $H = \overline{M_{s.a.\xi}}^\mathbb{R}$ is cyclic (separating) iff ξ is cyclic (separating) for M. (\mathcal{H} is called the standard representation if both holds.)

Modular data for standard subspace $H \subset \mathcal{H}$: Involution $S_H : \mathcal{H} \to \mathcal{H}$ with $D(S_H) = H + iH$,

$$S_H(f+ig)=f-ig, \quad \forall f,g\in H.$$

Polar decomposition $S_H = J_H \Delta_H^{1/2}$, then

$$\Delta_H^{it}H=H, \quad \forall t\in \mathbb{R}.$$

 J_H anti-unitary and $H'=J_HH$ is the symplectic complement of H w.r.t $\mathrm{Im}\langle\cdot,\cdot\rangle$. [Shlyakhtenko'97] $H\subseteq\mathcal{H}$ standard subspace \iff one-parameter orthogonal groups Δ_H^{-it} acting on H.

$$H \subset \mathcal{H}$$
 standard, $\mathcal{L}_T(\mathcal{H}) := \{X_T(f) = a(f) + a^*(f) : f \in H\}.$

▶ T = F, $X_F(f)$'s satisfies CCR relation $[X(f), X(g)] = 2\text{Im}\langle f, g \rangle$ with respect to the symplectic form $2\text{Im}\langle \cdot, \cdot \rangle$ on H. $(W(tf) := \exp(itX_F(f))$ generates the Weyl's algebra.)

$$H \subset \mathcal{H}$$
 standard, $\mathcal{L}_T(\mathcal{H}) := \{X_T(f) = a(f) + a^*(f) : f \in H\}.$

- ▶ T = F, $X_F(f)$'s satisfies CCR relation $[X(f), X(g)] = 2\text{Im}\langle f, g \rangle$ with respect to the symplectic form $2\text{Im}\langle \cdot, \cdot \rangle$ on H. $(W(tf) := \exp(itX_F(f))$ generates the Weyl's algebra.)
- ► T = -F, $X_{-F}(f)$'s satisfies CAR relation $\{X(f), X(g)\} = 2\text{Re}\langle f, g \rangle$ with respect to the symmetric bilinear form $2\text{Re}\langle \cdot, \cdot \rangle$ on H. [Araki, Woods'69]

$$H \subset \mathcal{H}$$
 standard, $\mathcal{L}_T(\mathcal{H}) := \{X_T(f) = a(f) + a^*(f) : f \in H\}.$

- ▶ T = F, $X_F(f)$'s satisfies CCR relation $[X(f), X(g)] = 2\text{Im}\langle f, g \rangle$ with respect to the symplectic form $2\text{Im}\langle \cdot, \cdot \rangle$ on H. $(W(tf) := \exp(itX_F(f))$ generates the Weyl's algebra.)
- ▶ T = -F, $X_{-F}(f)$'s satisfies CAR relation $\{X(f), X(g)\} = 2\text{Re}\langle f, g \rangle$ with respect to the symmetric bilinear form $2\text{Re}\langle \cdot, \cdot \rangle$ on H. [Araki, Woods'69]
- ► T = 0, $\mathcal{L}_0(H)$ is the free Araki-Woods algebra [Shlyakhtenko'97].

$$H \subset \mathcal{H}$$
 standard, $\mathcal{L}_T(\mathcal{H}) := \{X_T(f) = a(f) + a^*(f) : f \in H\}.$

- ▶ T = F, $X_F(f)$'s satisfies CCR relation $[X(f), X(g)] = 2\text{Im}\langle f, g \rangle$ with respect to the symplectic form $2\text{Im}\langle \cdot, \cdot \rangle$ on H. $(W(tf) := \exp(itX_F(f))$ generates the Weyl's algebra.)
- ▶ T = -F, $X_{-F}(f)$'s satisfies CAR relation $\{X(f), X(g)\} = 2\text{Re}\langle f, g \rangle$ with respect to the symmetric bilinear form $2\text{Re}\langle \cdot, \cdot \rangle$ on H. [Araki, Woods'69]
- ► T = 0, $\mathcal{L}_0(H)$ is the free Araki-Woods algebra [Shlyakhtenko'97].
- ► T = qF, $\mathcal{L}_{qF}(H)$ is the q-Araki-Woods algebra [F.Hiai'01].

Example

If $\Delta_H = \mathrm{id}$, $(\mathcal{H} = \mathbb{C} \otimes H)$, then

- $ightharpoonup \mathcal{L}_{-F}(H) = M_{2^n}(\mathbb{C})$ when $\dim \mathcal{H} = 2n$;
- $ightharpoonup \mathcal{L}_F(H)$ is diffuse abelian;
- $ightharpoonup \mathcal{L}_0(H) \simeq L(F_{\dim H});$
- ▶ $\mathcal{L}_{qF}(H)$ is the q-Gaussian algebra for -1 < q < 1.
- ▶ If $T(e_i \otimes e_j) = q_{ij}e_j \otimes e_i$, then $\mathcal{L}_T(H)$ is the mixed q-Gaussian algebra.

Separability of the vacuum Ω for $\mathcal{L}_T(\mathcal{H})$

We have choosen $H \subseteq \mathcal{H}$ to be a standard subspace, but when is $\mathcal{F}_T(\mathcal{H})$ a standard representation of $\mathcal{L}_T(H)$? Namely, when is Ω separating? (Ω obviously cyclic)

Separability of the vacuum Ω for $\mathcal{L}_{\mathcal{T}}(\mathcal{H})$

We have choosen $H\subseteq \mathcal{H}$ to be a standard subspace, but when is $\mathcal{F}_T(\mathcal{H})$ a standard representation of $\mathcal{L}_T(H)$? Namely, when is Ω separating? (Ω obviously cyclic)

Theorem (G. Lechner, R.C. da Silva'22+)

T a twist, $H \subset \mathcal{H}$ standard subspace. Assume T is compatible with $H: [T, \Delta_H^{it} \otimes \Delta_H^{it}] = 0$. Then Ω is separating for $\mathcal{L}_T(H)$ if and only if

- $T_1 T_2 T_1 = T_2 T_1 T_2.$
- lacktriangle T is crossing symmetric: for all $\psi_1, \cdots, \psi_4 \in \mathcal{H}$, the function on $\mathbb R$

$$\mathcal{T}_{\psi_3,\psi_4}^{\psi_2,\psi_1}(t) := \langle \psi_2 \otimes \psi_1, (\Delta_H^{it} \otimes 1) \mathcal{T}(1 \otimes \Delta_H^{-it}) (\psi_3 \otimes \psi_4) \rangle$$

is holomorphic on the strip $\{z \in \mathbb{C} : 0 \le Im(z) \le 1/2\}$

$$T_{\psi_3,\psi_4}^{\psi_2,\psi_1}(t+\frac{i}{2}):=\langle \psi_1\otimes J_H\psi_4,(1\otimes\Delta_H^{it})T(\Delta_H^{-it}\otimes 1)(J_H\psi_2\otimes\psi_3)\rangle.$$

Denote the contraction $C(f_1 \otimes f_2) = \langle S_H f_1, f_2 \rangle$. $C_i = id^{i-1} \otimes C \otimes id^{n-i-1}$.

Proposition (Y)

T crossing symmetric iff $C_1 T_2 = C_2 T_1$.

crossing symmetry
$$\iff$$
 $C_1T_2 = C_2T_1$

For the tracial case, crossing symmetry is simple: Let $\{e_i\}$ be an orthogonal basis of H, and $T_{ii}^{kl} = \langle e_k \otimes e_l, e_i \otimes e_j \rangle$, then

$$T_{ij}^{kl}=T_{ki}^{lj}.$$

crossing symmetry
$$\iff$$
 $C_1T_2 = C_2T_1$

For the tracial case, crossing symmetry is simple: Let $\{e_i\}$ be an orthogonal basis of H, and $T_{ij}^{kl} = \langle e_k \otimes e_l, e_i \otimes e_j \rangle$, then

$$T_{ij}^{kl} = T_{ki}^{lj}$$
.

Apply C_1T_2 to $e_{ijk}:=e_i\otimes e_j\otimes e_k$, we get $C_1T_2(e_{ijk})=\sum_{x,y}C_1(T_{jk}^{xy}e_{ixy})=\sum_{x,y}\delta_{ix}T_{jk}^{xy}e_y=\sum_yT_{jk}^{iy}e_y$. And similarly, $C_2T_1(e_{ijk})=\sum_{x,y}C_2(T_{ij}^{xy}e_{xyk})=\sum_{x,y}\delta_{yk}T_{ij}^{xy}e_x=\sum_xT_{ij}^{xk}e_x$.

crossing symmetry
$$\iff$$
 $C_1T_2 = C_2T_1$

For the tracial case, crossing symmetry is simple: Let $\{e_i\}$ be an orthogonal basis of H, and $T_{ij}^{kl} = \langle e_k \otimes e_l, e_i \otimes e_j \rangle$, then

$$T_{ij}^{kl}=T_{ki}^{lj}.$$

Apply $C_1 T_2$ to $e_{ijk} := e_i \otimes e_j \otimes e_k$, we get

$$C_1 T_2(e_{ijk}) = \sum_{x,y} C_1(T_{jk}^{xy}e_{ixy}) = \sum_{x,y} \delta_{ix} T_{jk}^{xy} e_y = \sum_y T_{jk}^{iy} e_y$$
. And similarly, $C_2 T_1(e_{ijk}) = \sum_{x,y} C_2(T_{ij}^{xy}e_{xyk}) = \sum_{x,y} \delta_{yk} T_{ij}^{xy} e_x = \sum_x T_{ij}^{xk} e_x$.

▶ Therefore, crossing symmetry \iff $C_1T_2 = C_2T_1$.

crossing symmetry
$$\iff$$
 $C_1T_2 = C_2T_1$

For the tracial case, crossing symmetry is simple: Let $\{e_i\}$ be an orthogonal basis of H, and $T_{ij}^{kl}=\langle e_k\otimes e_l,e_i\otimes e_j\rangle$, then

$$T_{ij}^{kl}=T_{ki}^{lj}.$$

Apply $C_1 T_2$ to $e_{ijk} := e_i \otimes e_j \otimes e_k$, we get

$$C_1 T_2(e_{ijk}) = \sum_{x,y} C_1(T_{jk}^{xy}e_{ixy}) = \sum_{x,y} \delta_{ix} T_{jk}^{xy}e_y = \sum_y T_{jk}^{iy}e_y.$$
 And similarly, $C_2 T_1(e_{ijk}) = \sum_{x,y} C_2(T_{ij}^{xy}e_{xyk}) = \sum_{x,y} \delta_{yk} T_{ij}^{xy}e_x = \sum_x T_{ij}^{xk}e_x.$

- ▶ Therefore, crossing symmetry \iff $C_1T_2 = C_2T_1$.
- In general, we need to be careful about S_H and Δ_H^{it} when taking contractions, and use uniqueness of analytic extension.

An example of (non q_{ij}) crossing symmetric twist

Let $\mathcal{H}=M_n(\mathbb{C})$, with inner product induced by Tr, and $H=M_n(\mathbb{C})_{s.a.}$. Denote $m:M_n(\mathbb{C})\otimes M_n(\mathbb{C})\to M_n(\mathbb{C})$ the multiplication operator:

$$m(a \otimes b) = ab$$
.

Then $T = cm^*m$ is a crossing symmetric Yang-Baxter solution (due to Frobenious structure of finite dimensional C^* -algebras). And ||T|| = cn.

Conjugate variables and free Fisher information

Let (X_1, \dots, X_d) be a family of noncommutative random variables (not necessarily self-adjoint).

The free Fisher information of (X_1, \dots, X_d) is defined via conjugate variables $\Xi_i := \partial_i^* (1 \otimes 1)$ w.r.t. the free difference quotient $\partial_i : L^2(M, \varphi) \to L^2(M, \varphi) \otimes L^2(M, \varphi)$:

$$\partial_i(X_j) = \delta_{ij} 1 \otimes 1, \quad \partial_i(pq) = (\partial_i p) \cdot q + p \cdot (\partial_i q).$$

Free Fisher information:

$$\Phi(X_1, \dots, X_d) := \sum_{i=1}^d \|\Xi_i\|_2^2 = \sum_{i=1}^d \|\partial_i^*(1 \otimes 1)\|_2^2.$$

Conjugate variables and free Fisher information

Let (X_1, \dots, X_d) be a family of noncommutative random variables (not necessarily self-adjoint).

The free Fisher information of (X_1, \dots, X_d) is defined via conjugate variables $\Xi_i := \partial_i^* (1 \otimes 1)$ w.r.t. the free difference quotient $\partial_i : L^2(M, \varphi) \to L^2(M, \varphi) \otimes L^2(M, \varphi)$:

$$\partial_i(X_j) = \delta_{ij} 1 \otimes 1, \quad \partial_i(pq) = (\partial_i p) \cdot q + p \cdot (\partial_i q).$$

Free Fisher information:

$$\Phi(X_1,\cdots,X_d):=\sum_{i=1}^d\|\Xi_i\|_2^2=\sum_{i=1}^d\|\partial_i^*(1\otimes 1)\|_2^2.$$

Example

 (S_1,\cdots,S_d) a family of freely independent semicircular variables, then $\xi_i=S_i$, hence $\Phi(X_1,\cdots,X_d):=\sum_{i=1}^d\|\Xi_i\|_2^2=\sum_{i=1}^d\|S_i\|_2^2=d$.

Conjugate variables and free Fisher information

Let (X_1, \dots, X_d) be a family of noncommutative random variables (not necessarily self-adjoint).

The free Fisher information of (X_1, \dots, X_d) is defined via conjugate variables $\Xi_i := \partial_i^* (1 \otimes 1)$ w.r.t. the free difference quotient $\partial_i : L^2(M, \varphi) \to L^2(M, \varphi) \otimes L^2(M, \varphi)$:

$$\partial_i(X_i) = \delta_{ij} 1 \otimes 1, \quad \partial_i(pq) = (\partial_i p) \cdot q + p \cdot (\partial_i q).$$

Free Fisher information:

$$\Phi(X_1,\cdots,X_d):=\sum_{i=1}^d\|\Xi_i\|_2^2=\sum_{i=1}^d\|\partial_i^*(1\otimes 1)\|_2^2.$$

Example

 (S_1,\cdots,S_d) a family of freely independent semicircular variables, then $\xi_i=S_i$, hence $\Phi(X_1,\cdots,X_d):=\sum_{i=1}^d\|\Xi_i\|_2^2=\sum_{i=1}^d\|S_i\|_2^2=d$.

Properties when conjugate variables exists

Properties when conjugate variables exists

► Factoriality: A finite von Neumann algebra $(W^*(X_1, \dots, X_d), \tau)$ with finite non-microstate free fisher information is non- Γ II₁ factor by Dabrowski 2010. Nontracial cases: B. Nelson '17.

Properties when conjugate variables exists

- ► Factoriality: A finite von Neumann algebra $(W^*(X_1, \dots, X_d), \tau)$ with finite non-microstate free fisher information is non- Γ II₁ factor by Dabrowski 2010. Nontracial cases: B. Nelson '17.
- Free monotone transport: If the conjugate variables (Ξ_1, \dots, Ξ_d) exists and $\|\Xi_i X_i\|_R$ is small, then by [Guionnet, Shlyakhtenko,'13] there exists free monotone transport from M to $L(F_d)$, hence

$$W^*(X_1,\cdots,X_d)\simeq L(F_d).$$

Nontracial cases: B. Nelson '15.

Example: q-Gaussian for small q [Dabrowski'14], for all -1 < q < 1 [Miyagawa, Speicher'22]. q-Araki-Woods algebras for -1 < q < 1 [A. Skalski, M. Kumar, M. Wasilewski'23].

Recall $\forall f \in H + iH, X_T(f) = a_T^*(f) + a_T(f)$. The formula for a_T :

$$a_T(f) = a(f)(1 + T_1 + \cdots + T_1 \cdots T_k)$$

Recall $\forall f \in H + iH, X_T(f) = a_T^*(f) + a_T(f)$. The formula for a_T :

$$a_T(f) = a(f)(1 + T_1 + \cdots + T_1 \cdots T_k)$$

$$C(f \otimes g) = \langle Sf, g \rangle$$
, and $C_i = \mathrm{id}_{\mathcal{H}}^{\otimes (i-1)} \otimes C \otimes \mathrm{id}$

Recall $\forall f \in H + iH, X_T(f) = a_T^*(f) + a_T(f)$. The formula for a_T :

$$a_T(f) = a(f)(1 + T_1 + \cdots + T_1 \cdots T_k)$$

$$C(f \otimes g) = \langle Sf, g \rangle$$
, and $C_i = id_{\mathcal{H}}^{\otimes (i-1)} \otimes C \otimes id$

$$a(Sf)(f_1\otimes\cdots\otimes f_k)=C_1(f\otimes f_1\otimes\cdots\otimes f_k)$$

$$a_T(Sf)(f_1 \otimes \cdots \otimes f_k) = C_1(1 + T_2 + \cdots + T_2 \cdots T_{k+1})(f \otimes f_1 \otimes \cdots \otimes f_k)$$

Recall $\forall f \in H + iH, X_T(f) = a_T^*(f) + a_T(f)$. The formula for a_T :

$$a_T(f) = a(f)(1 + T_1 + \cdots + T_1 \cdots T_k)$$

$$C(f \otimes g) = \langle Sf, g \rangle$$
, and $C_i = id_{\mathcal{H}}^{\otimes (i-1)} \otimes C \otimes id$

$$a(Sf)(f_1 \otimes \cdots \otimes f_k) = C_1(f \otimes f_1 \otimes \cdots \otimes f_k)$$

$$a_T(Sf)(f_1 \otimes \cdots \otimes f_k) = C_1(1 + T_2 + \cdots + T_2 \cdots T_{k+1})(f \otimes f_1 \otimes \cdots \otimes f_k)$$

$$X_{\tau}(\xi_1)Q = \xi_1 \quad X_{\tau}(\xi_1)X_{\tau}(\xi_2)Q = X_{\tau}(\xi_1)\xi_2 = (2^*(\xi_1) + 2\tau(\xi_1))\xi_2 = (2^*(\xi_1) + 2\tau(\xi_1))\xi_1 = (2^*(\xi_1) + 2\tau(\xi_1))\xi_2 = (2^*(\xi_1) + 2\tau(\xi_1))\xi_1 = (2^*(\xi_1) + 2\tau(\xi_1))\xi_2 = (2^*(\xi_1) + 2\tau(\xi_1))\xi_1 = (2^*(\xi_1) + 2\tau(\xi_1) = (2^*(\xi_1) + 2\tau(\xi_1) +$$

$$X_T(\xi_1)\Omega = \xi_1. \ X_T(\xi_1)X_T(\xi_2)\Omega = X_T(\xi_1)\xi_2 = (a_T^*(\xi_1) + a_T(S\xi_1))\xi_2 = \xi_1 \otimes \xi_2 + \langle S\xi_1, \xi_2 \rangle \Omega.$$

Recall $\forall f \in H + iH, X_T(f) = a_T^*(f) + a_T(f)$. The formula for a_T :

$$a_T(f) = a(f)(1 + T_1 + \cdots + T_1 \cdots T_k)$$

$$C(f \otimes g) = \langle Sf, g \rangle$$
, and $C_i = \mathrm{id}_{\mathcal{H}}^{\otimes (i-1)} \otimes C \otimes \mathrm{id}$

$$a(Sf)(f_1 \otimes \cdots \otimes f_k) = C_1(f \otimes f_1 \otimes \cdots \otimes f_k)$$

$$a_T(Sf)(f_1 \otimes \cdots \otimes f_k) = C_1(1 + T_2 + \cdots + T_2 \cdots T_{k+1})(f \otimes f_1 \otimes \cdots \otimes f_k)$$

$$X_T(\xi_1)\Omega = \xi_1. \ X_T(\xi_1)X_T(\xi_2)\Omega = X_T(\xi_1)\xi_2 = (a_T^*(\xi_1) + a_T(S\xi_1))\xi_2 = \xi_1 \otimes \xi_2 + \langle S\xi_1, \xi_2 \rangle \Omega.$$

$$X_T(\xi_1)X_T(\xi_2)X_T(\xi_3)\Omega = (a_T^*(\xi_1) + a_T(S\xi_1))(\xi_2 \otimes \xi_3 + \langle S\xi_2, \xi_3 \rangle \Omega)$$

=\xi_1 \otimes \xi_2 \otimes \xi_3 + \langle S\xi_2, \xi_3 \rangle \xi_1 + a(S\xi_1)(1 + T_1)(\xi_2 \otimes \xi_3)
=\xi_1 \otimes \xi_2 \otimes \xi_3 + \langle S\xi_2, \xi_3 \rangle \xi_1 + \langle S\xi_1, \xi_2 \rangle \xi_3 + a(S\xi_1)T(\xi_2 \otimes \xi_3)

From polynomials to tensors

$$X_{T}(\xi_{1})\Omega = \xi_{1} = \downarrow$$

$$X_{T}(\xi_{1})X_{T}(\xi_{2})\Omega = \xi_{1} \otimes \xi_{2} + \langle S\xi_{1}, \xi_{2} \rangle = \downarrow \quad \downarrow \quad + \quad \downarrow$$

$$X_{T}(\xi_{1})X_{T}(\xi_{2})X_{T}(\xi_{3})\Omega = \xi_{1} \otimes \xi_{2} \otimes \xi_{3} + \langle S\xi_{1}, \xi_{2} \rangle \xi_{3} + \langle S\xi_{2}, \xi_{3} \rangle \xi_{1} + a(S\xi_{1})T(\xi_{2} \otimes \xi_{3})$$

$$X_{T}(\xi_{1})X_{T}(\xi_{2})X_{T}(\xi_{3})\Omega = \downarrow \quad \downarrow \quad + \quad \downarrow \quad + \quad \downarrow$$

From polynomials to tensors

$$X_{T}(\xi_{1})\Omega = \xi_{1} = \downarrow$$

$$X_{T}(\xi_{1})X_{T}(\xi_{2})\Omega = \xi_{1} \otimes \xi_{2} + \langle S\xi_{1}, \xi_{2} \rangle = \downarrow \quad \downarrow + \downarrow$$

$$X_{T}(\xi_{1})X_{T}(\xi_{2})X_{T}(\xi_{3})\Omega = \xi_{1} \otimes \xi_{2} \otimes \xi_{3} + \langle S\xi_{1}, \xi_{2} \rangle \xi_{3} + \langle S\xi_{2}, \xi_{3} \rangle \xi_{1} + a(S\xi_{1})T(\xi_{2} \otimes \xi_{3})$$

$$X_{T}(\xi_{1})X_{T}(\xi_{2})X_{T}(\xi_{3})\Omega = \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow$$

$$X_{T}(\xi_{1})X_{T}(\xi_{2})X_{T}(\xi_{3})X_{T}(\xi_{4})\Omega = \cdots + \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow$$

$$X_{T}(\xi_{1})X_{T}(\xi_{2})X_{T}(\xi_{3})X_{T}(\xi_{4})\Omega = \cdots + \downarrow \quad \downarrow \quad \downarrow \quad \downarrow$$

$$X_{T}(\xi_{1})X_{T}(\xi_{2})X_{T}(\xi_{3})X_{T}(\xi_{4})\Omega = \cdots + \downarrow \quad \downarrow \quad \downarrow \quad \downarrow$$

$$X_{T}(\xi_{1})X_{T}(\xi_{2})X_{T}(\xi_{3})X_{T}(\xi_{4})\Omega = \cdots + \downarrow \quad \downarrow \quad \downarrow$$

$$X_{T}(\xi_{1})X_{T}(\xi_{2})X_{T}(\xi_{3})X_{T}(\xi_{4})\Omega = \cdots + \downarrow \quad \downarrow$$

$$X_{T}(\xi_{1})X_{T}(\xi_{2})X_{T}(\xi_{3})X_{T}(\xi_{3})X_{T}(\xi_{3})X_{T}(\xi_{3})X_{T}(\xi_{3})X_{T}(\xi_{3})X_{T}(\xi_{3})X_{T}(\xi_{3})X_{T}(\xi_{3})X_{T}(\xi_{3})X_{T}(\xi_{3})X_{T}(\xi_$$

From polynomials to tensors

$$X_{T}(\xi_{1})\Omega = \xi_{1} = \downarrow$$

$$X_{T}(\xi_{1})X_{T}(\xi_{2})\Omega = \xi_{1} \otimes \xi_{2} + \langle S\xi_{1}, \xi_{2} \rangle = \downarrow \quad \downarrow \quad + \quad \downarrow$$

$$X_{T}(\xi_{1})X_{T}(\xi_{2})X_{T}(\xi_{3})\Omega = \xi_{1} \otimes \xi_{2} \otimes \xi_{3} + \langle S\xi_{1}, \xi_{2} \rangle \xi_{3} + \langle S\xi_{2}, \xi_{3} \rangle \xi_{1} + a(S\xi_{1})T(\xi_{2} \otimes \xi_{3})$$

$$X_{T}(\xi_{1})X_{T}(\xi_{2})X_{T}(\xi_{3})\Omega = \downarrow \quad \downarrow \quad + \quad \downarrow \quad + \quad \downarrow$$

$$X_{T}(\xi_{1})X_{T}(\xi_{2})X_{T}(\xi_{3})X_{T}(\xi_{4})\Omega = \cdots + \quad \downarrow \quad + \quad \downarrow$$

$$= \cdots + a(S\xi_{1})T(\xi_{2} \otimes \xi_{3}) \otimes \xi_{4} + a(S\xi_{1})a(S\xi_{2})T(\xi_{3} \otimes \xi_{4})\Omega + \langle S\xi_{2}, \xi_{3} \rangle \langle S\xi_{1}, \xi_{4} \rangle \Omega$$

In general, $X_T(\xi_1)\cdots X_T(\xi_k)$ is summing over partitions that only contain pairings and singletons: $\mathcal{P}_{1,2}(k)$.

Definition (Wick product)

For $f_i \in \mathcal{H}$, $\Phi(f_1 \otimes \cdots \otimes f_n)$ is the unique operator in $\mathcal{L}_T(H)$ such that

$$\Phi(f_1\otimes\cdots\otimes f_n)\Omega=f_1\otimes\cdots\otimes f_n.$$

Definition (Wick product)

For $f_i \in \mathcal{H}$, $\Phi(f_1 \otimes \cdots \otimes f_n)$ is the unique operator in $\mathcal{L}_T(H)$ such that

$$\Phi(f_1\otimes\cdots\otimes f_n)\Omega=f_1\otimes\cdots\otimes f_n.$$

$$X(\xi_1)X(\xi_2) = \xi_1 \otimes \xi_2 + \langle S_H \xi_1, \xi_2 \rangle \Omega$$

$$\Phi(\xi_1 \otimes \xi_2) = X(\xi_1)X(\xi_2) - \langle S_H \xi_1, \xi_2 \rangle$$

Definition (Wick product)

For $f_i \in \mathcal{H}$, $\Phi(f_1 \otimes \cdots \otimes f_n)$ is the unique operator in $\mathcal{L}_T(H)$ such that

$$\Phi(f_1\otimes\cdots\otimes f_n)\Omega=f_1\otimes\cdots\otimes f_n.$$

$$X(\xi_1)X(\xi_2) = \xi_1 \otimes \xi_2 + \langle S_H \xi_1, \xi_2 \rangle \Omega$$

$$\Phi(\xi_1 \otimes \xi_2) = X(\xi_1)X(\xi_2) - \langle S_H \xi_1, \xi_2 \rangle$$

$$X(\xi_1)X(\xi_2)X(\xi_3)\Omega = \xi_1 \otimes \xi_2 \otimes \xi_3 + \langle S\xi_1, \xi_2 \rangle \xi_3 + \langle S\xi_2, \xi_3 \rangle \xi_1 + a(S\xi_1)T(\xi_2 \otimes \xi_3)$$

Definition (Wick product)

For $f_i \in \mathcal{H}$, $\Phi(f_1 \otimes \cdots \otimes f_n)$ is the unique operator in $\mathcal{L}_T(H)$ such that

$$\Phi(f_1\otimes\cdots\otimes f_n)\Omega=f_1\otimes\cdots\otimes f_n.$$

$$X(\xi_1)X(\xi_2) = \xi_1 \otimes \xi_2 + \langle S_H \xi_1, \xi_2 \rangle \Omega$$

$$\Phi(\xi_1 \otimes \xi_2) = X(\xi_1)X(\xi_2) - \langle S_H \xi_1, \xi_2 \rangle$$

$$X(\xi_1)X(\xi_2)X(\xi_3)\Omega = \xi_1 \otimes \xi_2 \otimes \xi_3 + \langle S\xi_1, \xi_2 \rangle \xi_3 + \langle S\xi_2, \xi_3 \rangle \xi_1 + a(S\xi_1)T(\xi_2 \otimes \xi_3)$$

$$\Phi(\xi_1 \otimes \xi_2 \otimes \xi_3) = X(\xi_1)X(\xi_2)X(\xi_3) - \langle S\xi_1, \xi_2 \rangle X(\xi_3) \\
- \langle S\xi_2, \xi_3 \rangle X(\xi_1) - X(a(S\xi_1)T(\xi_2 \otimes \xi_3))$$

$$\Phi(\xi_1 \otimes \xi_2 \otimes \xi_3) = X(\xi_1)X(\xi_2)X(\xi_3) - \langle S\xi_1, \xi_2 \rangle X(\xi_3) - \langle S\xi_2, \xi_3 \rangle X(\xi_1) - X(a(S\xi_1)T(\xi_2 \otimes \xi_3))$$

$$\Phi(\xi_1 \otimes \xi_2 \otimes \xi_3) =$$

$$\Phi(\xi_1 \otimes \xi_2 \otimes \xi_3) = X(\xi_1)X(\xi_2)X(\xi_3) - \langle S\xi_1, \xi_2 \rangle X(\xi_3) - \langle S\xi_2, \xi_3 \rangle X(\xi_1) - X(a(S\xi_1)T(\xi_2 \otimes \xi_3))$$

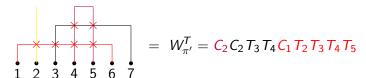
 $\varPhi(\xi_1 \otimes \xi_2 \otimes \xi_3 \otimes \xi_4) = \cdots + \boxed{ } + \boxed{ }$

$$\Phi(\xi_1 \otimes \xi_2 \otimes \xi_3) = X(\xi_1)X(\xi_2)X(\xi_3) - \langle S\xi_1, \xi_2 \rangle X(\xi_3) - \langle S\xi_2, \xi_3 \rangle X(\xi_1) - X(a(S\xi_1)T(\xi_2 \otimes \xi_3))$$

Number of crossings = Number of T_i 's. Height of chord = Order of contractions. Number of pairings = Number of C_i 's

$$= W_{\pi'}^{T} = C_{2}C_{2}T_{3}T_{4}C_{1}T_{2}T_{3}T_{4}T_{5}$$
1 2 3 4 5 6 7

$$\pi' = \{\{1,6\}, \{3,7\}, \{2\}, \{4\}, \{5\}\} \in \mathcal{P}_{1,2}(7).$$



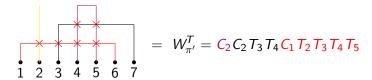
$$\pi' = \{\{1,6\},\{3,7\},\{2\},\{4\},\{5\}\} \in \mathcal{P}_{1,2}(7).$$



For *q*-Araki-Woods algebra, T=qF, this is precisely taking contraction of $\langle S\xi_1,\xi_6\rangle$ and $\langle S\xi_3,\xi_7\rangle$:

$$W_{\pi'}^{qF}(\xi_1 \otimes \cdots \otimes \xi_7) = q$$

$$\pi' = \{\{1,6\},\{3,7\},\{2\},\{4\},\{5\}\} \in \mathcal{P}_{1,2}(7).$$



For q-Araki-Woods algebra, T=qF, this is precisely taking contraction of $\langle S\xi_1,\xi_6\rangle$ and $\langle S\xi_3,\xi_7\rangle$:

$$W_{\pi'}^{qF}(\xi_1 \otimes \cdots \otimes \xi_7) = q \langle S\xi_1, \xi_6 \rangle \langle S\xi_3, \xi_7 \rangle \langle S\xi_4, \xi_5 \rangle \xi_2$$

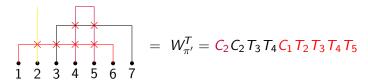
$$\pi' = \{\{1,6\},\{3,7\},\{2\},\{4\},\{5\}\} \in \mathcal{P}_{1,2}(7).$$



For *q*-Araki-Woods algebra, T=qF, this is precisely taking contraction of $\langle S\xi_1,\xi_6\rangle$ and $\langle S\xi_3,\xi_7\rangle$:

$$W_{\pi'}^{qF}(\xi_1 \otimes \cdots \otimes \xi_7) = q^6 \langle S\xi_1, \xi_6 \rangle \langle S\xi_3, \xi_7 \rangle \langle S\xi_4, \xi_5 \rangle \xi_2$$

$$\pi' = \{\{1,6\},\{3,7\},\{2\},\{4\},\{5\}\} \in \mathcal{P}_{1,2}(7).$$



For q-Araki-Woods algebra, T=qF, this is precisely taking contraction of $\langle S\xi_1, \xi_6 \rangle$ and $\langle S\xi_3, \xi_7 \rangle$:

$$W_{\pi'}^{qF}(\xi_1 \otimes \cdots \otimes \xi_7) = q^6 \langle S\xi_1, \xi_6 \rangle \langle S\xi_3, \xi_7 \rangle \langle S\xi_4, \xi_5 \rangle \xi_2$$

For general T, $W_{\pi'}^T$ involves information about all ξ_i , and there are no explicit formula other than the definition $C_2T_3T_4C_1T_2T_3T_4T_5$.

Theorem (Wick formula, Y)

$$\Phi(\xi_1 \otimes \cdots \otimes \xi_n) = X \left(\sum_{\pi \in \mathcal{P}_{1,2}(n)} (-1)^{|p(\pi)|} W_{\pi}^{\mathsf{T}}(\xi_1 \otimes \cdots \otimes \xi_n) \right),$$

where X is the linear map

$$X(\eta_1 \otimes \cdots \otimes \eta_k) = X_T(\eta_1)X_T(\eta_2) \cdots X_T(\eta_k) \in \mathcal{L}_T(H)$$
 for all $\eta_i \in \mathcal{H}$ and $X(\Omega) = 1$. $\mathcal{P}_{1,2}(n)$ partitions with only pairings and singletons.

Theorem (Wick formula, Y)

$$\Phi(\xi_1 \otimes \cdots \otimes \xi_n) = X \left(\sum_{\pi \in \mathcal{P}_{1,2}(n)} (-1)^{|p(\pi)|} W_{\pi}^{\mathsf{T}}(\xi_1 \otimes \cdots \otimes \xi_n) \right),$$

where X is the linear map

$$X(\eta_1 \otimes \cdots \otimes \eta_k) = X_T(\eta_1)X_T(\eta_2) \cdots X_T(\eta_k) \in \mathcal{L}_T(H)$$
 for all $\eta_i \in \mathcal{H}$ and $X(\Omega) = 1$. $\mathcal{P}_{1,2}(n)$ partitions with only pairings and singletons.

Lemma (W_{π}^{T} is Order invariant)

If T is braided and crossing symmetric: $T_1T_2T_1 = T_2T_1T_2$, $C_1T_2 = C_2T_1$, then W_{π}^T is invariant under change of order (preserving the nesting).



Fix orthonomal basis (e_1, \dots, e_d) of \mathcal{H} , $X_i = X_T(e_i)$.

$$\partial_i \Phi(\xi_1 \otimes \cdots \otimes \xi_7) = \cdots + \partial_i + \cdots$$

$$= \cdots + + \cdots$$

Fix orthonomal basis (e_1, \dots, e_d) of \mathcal{H} , $X_i = X_T(e_i)$.

$$\partial_i \Phi(\xi_1 \otimes \cdots \otimes \xi_7) = \cdots + \partial_i$$

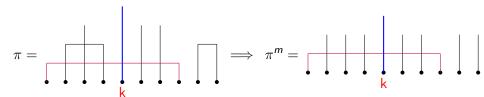
$$= \cdots + \qquad e_i$$

$$+ \cdots$$

Idea: ∂_i splits each $\pi \in \mathcal{P}_{1,2}(n)$ into the left part and the right part.

$$\begin{cases} \pi \in \mathcal{P}_{1,2}(n) \\ k: \text{ singleton of } \pi \end{cases} \iff \begin{cases} \pi^m \in \mathcal{P}_{1,2}(n) \\ k: \text{ singleton of } \pi^m, k \in \cap p(\pi^m) \\ \pi_l \in \mathcal{P}_{1,2}(s_l(\pi^m)), \pi_r \in \mathcal{P}_{1,2}(s_r(\pi^m)) \end{cases}$$

$$\begin{cases} \pi \in \mathcal{P}_{1,2}(n) \\ k: \text{ singleton of } \pi \end{cases} \iff \begin{cases} \pi^m \in \mathcal{P}_{1,2}(n) \\ k: \text{ singleton of } \pi^m, k \in \cap p(\pi^m) \\ \pi_l \in \mathcal{P}_{1,2}(s_l(\pi^m)), \pi_r \in \mathcal{P}_{1,2}(s_r(\pi^m)) \end{cases}$$



$$\left\{ \begin{array}{l} \pi \in \mathcal{P}_{1,2}(n) \\ k: \text{ singleton of } \pi \end{array} \right\} \iff \left\{ \begin{array}{l} \pi^m \in \mathcal{P}_{1,2}(n) \\ k: \text{ singleton of } \pi^m, k \in \cap p(\pi^m) \\ \pi_l \in \mathcal{P}_{1,2}(s_l(\pi^m)), \pi_r \in \mathcal{P}_{1,2}(s_r(\pi^m)) \end{array} \right\}$$

$$\pi = \prod_{k=1}^{m} \prod_{k=1}^{m$$

$$\pi_I = \boxed{ } \qquad \pi_r = \boxed{ } \qquad \boxed{ }$$

$$\begin{cases} \pi \in \mathcal{P}_{1,2}(n) \\ k: \text{ singleton of } \pi^m, k \in \cap p(\pi^m) \\ \pi_l \in \mathcal{P}_{1,2}(s_l(\pi^m)), \pi_r \in \mathcal{P}_{1,2}(s_r(\pi^m)) \end{cases}$$

$$\pi =$$

$$\pi =$$

$$\pi =$$

$$\pi_l =$$

$$\pi_r =$$

$$W^T_\pi = (W^T_{\pi_I} \otimes \mathsf{id}_\mathcal{H} \otimes W^T_{\pi_r}) W^T_{\pi^m}$$

$$W^T_\pi = (W^T_{\pi_I} \otimes \operatorname{id}_{\mathcal{H}} \otimes W^T_{\pi_r}) W^T_{\pi^m}$$

Set $\nabla_i^k : f_1 \otimes \cdots \otimes f_n \mapsto \langle e_i, f_k \rangle (f_1 \otimes \cdots \otimes f_{k-1}) \otimes (f_{k+1} \otimes \cdots \otimes f_n)$

$$egin{aligned} \partial_i \Phi &= \partial_i \sum_{\pi \in P_{1,2}(n)} (-1)^{\cdots} X \circ W_{\pi}^T = \sum_{k \in s(\pi)} \sum_{\pi \in P_{1,2}(n)} (-1)^{\cdots} X \circ
abla_i^k W_{\pi}^T \end{aligned} \ &= \sum_{\pi^m} \sum_{k \in \cap p(\pi^m)} \sum_{\pi_I} \sum_{\pi_r} (-1)^{\cdots} X \circ
abla_i^k (W_{\pi_I}^T \otimes \operatorname{id}_{\mathcal{H}} \otimes W_{\pi_r}^T) W_{\pi^m}^T \end{aligned} \ &= \sum_{\pi^m} \sum_{k \in \cap p(\pi^m)} \sum_{\pi_I} \sum_{\pi_I} (-1)^{\cdots} X \circ (W_{\pi_I}^T \otimes W_{\pi_r}^T)
abla_i^k W_{\pi}^T \end{aligned}$$

apply inverse formula for Φ for the sum $\pi_{\it l},\,\pi_{\it r},\,$ (and identify polynomials as its $\it L^2$ -image)

$$= \sum_{\pi^{m}} \sum_{k \in \cap p(\pi^{m})} (-1)^{\dots} \nabla_{i}^{k'} W_{\pi^{m}}^{T}$$

$$= \sum_{\pi} \sum_{k \in \cap p(\pi)} (-1)^{\dots} \nabla_{i}^{k'} W_{\pi}^{T}$$

$$\partial_i \Phi(\xi_1 \otimes \cdots \otimes \xi_n)$$
 and Ξ_i

Corollary (Y)

If T is braided and crossing symmetric,

$$\partial_i = \sum_{\pi \in \mathcal{P}_{1,2}(n)} \sum_{k \in \cap p(\pi)} (-1)^{|p(\pi)|} \nabla_i^{\mathcal{K}} W_{\pi}^T,$$

where k' is the position of k in the singletons $s(\pi)$.

$$\partial_i \Phi(\xi_1 \otimes \cdots \otimes \xi_n)$$
 and Ξ_i

Corollary (Y)

If T is braided and crossing symmetric,

$$\partial_i = \sum_{\pi \in \mathcal{P}_{1,2}(n)} \sum_{k \in \cap p(\pi)} (-1)^{|p(\pi)|} \nabla_i^{k'} W_{\pi}^T,$$

where k' is the position of k in the singletons $s(\pi)$.

Need to compute $\Xi_i = \partial_i^* (\Omega \otimes \Omega)$. Note that

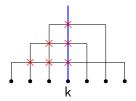
$$\langle \partial_i (\xi_1 \otimes \cdots \otimes \xi_n), \Omega \otimes \Omega \rangle = \langle \sum (-1)^m \nabla_i^{k'} W_{\pi}^T (\xi_1 \otimes \cdots \otimes \xi_n), \Omega \otimes \Omega \rangle$$

$$= \sum (-1)^m \langle W_{\pi}^T (\xi_1 \otimes \cdots \otimes \xi_n), e_i \rangle$$

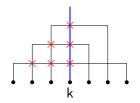
We only need to focus on π with the only singleton $k \in \cap p(\pi)$.

 $B(2m+1): \pi \in P_{1,2}(2m+1)$ with the only singleton $k = m \in \cap p(\pi)$:

B(2m+1): $\pi \in P_{1,2}(2m+1)$ with the only singleton $k = m \in \cap p(\pi)$:

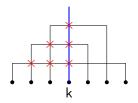


B(2m+1): $\pi \in P_{1,2}(2m+1)$ with the only singleton $k=m \in \cap p(\pi)$:



We must have: ANY i < k IS PAIRED WITH A j > k. Same phenomenon happened as in [Miyagawa, Speicher '22] for q-Gaussian.

B(2m+1): $\pi \in P_{1,2}(2m+1)$ with the only singleton $k=m \in \cap p(\pi)$:



We must have: ANY i < k IS PAIRED WITH A j > k. Same phenomenon happened as in [Miyagawa,Speicher '22] for q-Gaussian. In particular, for all such π , it has 'MAXIMAL' Crossing Number on the left:

$$\operatorname{wcr}(\pi) \geq \frac{m(m+1)}{2} \implies \|W_{\pi}^{T}\| \lesssim \|T\|^{m(m+1)/2}$$

$$\Xi_i$$

Continue the computation, we obtain:

Theorem (Y)

Let $\mathcal H$ be a finite dimensional complex Hilbert space with a standard subspace $H\subset \mathcal H$, and T be a compatible crossing symmetric and braided twist on $\mathcal H$ with $\|T\|<1$. Let (e_1,\cdots,e_d) be a orthonomal basis of $\mathcal H$. Then the conjugate system (Ξ_1,\cdots,Ξ_d) for $(X_T(e_1),\cdots,X_T(e_d))$ exists and

$$\Xi_{i} = \sum_{n=0}^{\infty} (-1)^{n} P_{T,2n+1}^{-1} \sum_{\pi \in B(2n+1)} (W_{\pi}^{T})^{*} e_{i}, \quad \forall 1 \leq i \leq d,$$

where the adjoint $(W_{\pi}^{T})^{*}$ is taken in the untwisted norm.

$$\Xi_i$$

Continue the computation, we obtain:

Theorem (Y)

Let $\mathcal H$ be a finite dimensional complex Hilbert space with a standard subspace $H\subset \mathcal H$, and T be a compatible crossing symmetric and braided twist on $\mathcal H$ with $\|T\|<1$. Let (e_1,\cdots,e_d) be a orthonomal basis of $\mathcal H$. Then the conjugate system (Ξ_1,\cdots,Ξ_d) for $(X_T(e_1),\cdots,X_T(e_d))$ exists and

$$\Xi_{i} = \sum_{n=0}^{30} (-1)^{n} P_{T,2n+1}^{-1} \sum_{\pi \in B(2n+1)} (W_{\pi}^{T})^{*} e_{i}, \quad \forall 1 \leq i \leq d,$$

where the adjoint $(W_{\pi}^{T})^{*}$ is taken in the untwisted norm.

Key observation: $\|(W_{\pi}^T)^*\| = \|W_{\pi}^T\| \lesssim \|T\|^{m(m+1)/2} \simeq e^{-cn^2}$ beats all other terms!!!

Conclusion

Corollary (Factoriality)

If $2 \le \dim \mathcal{H} < \infty$, ||T|| < 1, let $G < \mathbb{R}_{\times}^*$ be the closed subgroup generated by $Sp(\Delta_H)$, then then $\mathcal{L}_T(H)$ is a factor of type

$$\begin{cases} III_1, & \text{if } G = \mathbb{R}_+^\times \\ III_\lambda, & \text{if } G = \lambda^\mathbb{Z}, 0 < \lambda < 1 \\ II_1, & \text{if } G = \{1\}. \end{cases}$$

Conclusion

Corollary (Factoriality)

If $2 \leq \dim \mathcal{H} < \infty$, ||T|| < 1, let $G < \mathbb{R}^*$ be the closed subgroup generated by $Sp(\Delta_H)$, then then $\mathcal{L}_T(H)$ is a factor of type

$$\begin{cases} III_1, & \text{if } G = \mathbb{R}_+^\times \\ III_\lambda, & \text{if } G = \lambda^{\mathbb{Z}}, 0 < \lambda < 1 \\ II_1, & \text{if } G = \{1\}. \end{cases}$$

This + [da Silva, Lechner'22]'s result for dim $\mathcal{H} = \infty$ shows:

Corollary

 $\mathcal{L}_T(H)$ is a factor as soon as dim $\mathcal{H} \geq 2$ and ||T|| < 1.

Conclusion

Corollary (Factoriality)

If $2 \le \dim \mathcal{H} < \infty$, ||T|| < 1, let $G < \mathbb{R}_{\times}^*$ be the closed subgroup generated by $Sp(\Delta_H)$, then then $\mathcal{L}_T(H)$ is a factor of type

$$\begin{cases} III_1, & \text{if } G = \mathbb{R}_+^\times \\ III_\lambda, & \text{if } G = \lambda^{\mathbb{Z}}, 0 < \lambda < 1 \\ II_1, & \text{if } G = \{1\}. \end{cases}$$

This + [da Silva, Lechner'22]'s result for dim $\mathcal{H} = \infty$ shows:

Corollary

 $\mathcal{L}_T(H)$ is a factor as soon as dim $\mathcal{H} \geq 2$ and $\|T\| < 1$.

Corollary (Free monotone transport)

For $H \subset \mathcal{H}$ with $2 \leq \dim \mathcal{H} < \infty$, there is a constant $q_H > 0$ depending on H, such that for all $||T|| < q_H$,

$$\mathcal{L}_T(H) \simeq \mathcal{L}_0(H).$$

▶ Can we use the formula for Ξ_i to concretely compute the monotone tranport function (even for q-Gaussian)?

- ► Can we use the formula for Ξ_i to concretely compute the monotone tranport function (even for q-Gaussian)?
- For dim $\mathcal{H}=\infty$, what conditions on T can implies non- W^* -Akemann-Ostrand? (Known for q-Gaussian by [Caspers '22])

- ► Can we use the formula for Ξ_i to concretely compute the monotone tranport function (even for q-Gaussian)?
- For dim $\mathcal{H}=\infty$, what conditions on \mathcal{T} can implies non- W^* -Akemann-Ostrand? (Known for q-Gaussian by [Caspers '22])
- For dim $\mathcal{H}=\infty$, the *q*-Gaussian algebra is not biexact w.r.t. compact operators, but is it biexact w.r.t. some larger boundary piece \mathbb{X} ?

- ► Can we use the formula for Ξ_i to concretely compute the monotone tranport function (even for q-Gaussian)?
- For dim $\mathcal{H}=\infty$, what conditions on T can implies non- W^* -Akemann-Ostrand? (Known for q-Gaussian by [Caspers '22])
- ▶ For dim $\mathcal{H} = \infty$, the *q*-Gaussian algebra is not biexact w.r.t. compact operators, but is it biexact w.r.t. some larger boundary piece \mathbb{X} ?
- For dim $\mathcal{H}=\infty$, what conditions on T is sufficient for free monotone tranport (of infinite variables)? (Certain conditions known for q_{ij} -Gaussian by [Nelson, Zeng '15])

- ► Can we use the formula for Ξ_i to concretely compute the monotone tranport function (even for q-Gaussian)?
- For dim $\mathcal{H}=\infty$, what conditions on T can implies non- W^* -Akemann-Ostrand? (Known for q-Gaussian by [Caspers '22])
- For dim $\mathcal{H}=\infty$, the *q*-Gaussian algebra is not biexact w.r.t. compact operators, but is it biexact w.r.t. some larger boundary piece \mathbb{X} ?
- For dim $\mathcal{H}=\infty$, what conditions on T is sufficient for free monotone tranport (of infinite variables)? (Certain conditions known for q_{ij} -Gaussian by [Nelson, Zeng '15])
- ▶ Is $\mathcal{L}_{\mathcal{T}}(H)$ Connes embedable? (Known for q_{ij} Gaussian [Speicher '93]) (If so, using Dabrowski's results on Fisher information, tracial $\mathcal{L}_{\mathcal{T}}(H)$ must have maximal microstate free entropy dimension.)

- ► Can we use the formula for Ξ_i to concretely compute the monotone tranport function (even for q-Gaussian)?
- For dim $\mathcal{H}=\infty$, what conditions on T can implies non- W^* -Akemann-Ostrand? (Known for q-Gaussian by [Caspers '22])
- For dim $\mathcal{H}=\infty$, the *q*-Gaussian algebra is not biexact w.r.t. compact operators, but is it biexact w.r.t. some larger boundary piece \mathbb{X} ?
- For dim $\mathcal{H}=\infty$, what conditions on T is sufficient for free monotone tranport (of infinite variables)? (Certain conditions known for q_{ij} -Gaussian by [Nelson, Zeng '15])
- Is $\mathcal{L}_{\mathcal{T}}(H)$ Connes embedable? (Known for q_{ij} Gaussian [Speicher '93]) (If so, using Dabrowski's results on Fisher information, tracial $\mathcal{L}_{\mathcal{T}}(H)$ must have maximal microstate free entropy dimension.)
- ▶ What about $\mathcal{L}_T(H)$ when ||T|| = 1 (and when $T \ge 0$)? (There are examples: $\mathcal{L}_T(H)$ is still free group factor but ||T|| = 1.)

Thank you!