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Plan of the talk

» Recall the construction of Twisted Araki-Woods algebras £1(H) and
seperability of the vacuum state [da Silva, Lechner 22']

> Brief review of conjugate variables and free fisher information

» Explain how to concretely compute the conjugate system for L1(H):
Wick formula

» Some consequences: factoriality, free monotone transport.
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Fock spaces and Commutation relations
H a complex Hilbert space.

P Consider the symmetric, antisymmetric, and full Fock space

Fr(H) = P @5mH, F_r(H)=EPAH, Fo(H
n=0 n=0

) =P
n=0
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Fock spaces and Commutation relations

H a complex Hilbert space.

P Consider the symmetric, antisymmetric, and full Fock space

Fr( QB@WH F_f(H) = EB/\"H Fo(H) = P e
n=0 n=0

P The creation operator a*(f) : g1 ® - @ gn — fR g1 @ - - ® gn, and its adjoint a(f)
(annihilation operator) satisfies the Bosonic and Fermion commutation relations

ar(far(g)—ar(g)ar(f) = (fg), a-r(f)aZp(g)+aZp(g)a-r(f) = (fg), VigeH,

and for the full Fock space a(f)a*(g) = a(f)a*(g) + 0a*(g)a(f) = (f, g).
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Fr( QB@WH F_f(H) = @/\"H Fo(H) = P e
n=0 n=0

P The creation operator a*(f) : g1 ® - @ gn — fR g1 @ - - ® gn, and its adjoint a(f)
(annihilation operator) satisfies the Bosonic and Fermion commutation relations

ar(far(g)—ar(g)ar(f) = (fg), a-r(f)aZp(g)+aZp(g)a-r(f) = (fg), VigeH,
and for the full Fock space a(f)a*(g) = a(f)a*(g) + 0a*(g)a(f) = (f, g).
> Bozejko and Speicher considered the g-commutation relation (—1 < g < 1)
a(f)a(g) — qa*(f)a(g) = (1. &),

and showed that it can be realized as the creation and annihilation operators
on the g-Fock space Fyr(H).
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g and twisted Fock space
» F the tensor flip F(f® g) = g® fand T = gF, denote

Te=1"1@ Te1" 1 c B(H®.

> Kernel: Pr, =3 s V(o) € B(H®") with Wr(s) : Sp — B(H®") be the
quasi-multiplicative map (w.r.t the Cayley graph)

Wr((12)(45)) = T Ta, W1((123)) = W((12)(23)) = T1 To.

> T=qF, Pra(a® - ®&) = es, @™ 1) @ @ En(n)
> Alternatively, we can also define recursively

Rrni=14+T1+T1iTo+ -+ Ty Tp1,
Pr1i:=Rr1, Prn:=(1&®Prp_1)R7n

> Let Hrt,, be the closure of (H®", (-, Pr,,)), (possibly module off the kernel), then the
g-Fock space (or in general T-twisted Fock space) is

e}

Fr(H) == PH®", (. P1,n)) @HTn

n=0
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Positivity of Pt

To define F7(H), we need the positivity of Pr,, for n > 1 which is
nontrivial even for T = gF.

Theorem
Bozejko,Speicher'94 If T satisfies Yang-Baxter eq.
TiTaTy = ToT1 T

and | T|| <1 (||T|| < 1) then for all n >0, Pr, >0 ( Pr,>0).
Definition
T=T"e€eBH®H)Is

» atwist: Pr, >0, Vn>1.

» a strict twist: Pr, >0, Vn>1.
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Field operators
» T atwist. Left field operator on Fr(H):

X7(f) == ar(f) + a7(f), VfeH.

5/27



Field operators
» T atwist. Left field operator on Fr(H):

X7(f) == ar(f) + a7(f), VfeH.

» ar(f): conjugate linear, a%(f): linear, so 2a%(f) = X7(f) — iX(if), and
{X7(f) : fe H}' = {a%(f) : fe H}" = B(Fr(H)).

5/27



Field operators
» T atwist. Left field operator on Fr(H):
Xr(f) = ar(f) +a7(f), Ve H.

» ar(f): conjugate linear, a%(f): linear, so 2a%(f) = X7(f) — iX(if), and
{X7(f) : fe H}' = {a%(f) : fe H}" = B(Fr(H)).

> Want Q € Hr = CQ to be standard (cyclic and separating),
therefore we only take "half’ of the vectors:

L1(H) :={X7(f): fe H}, HC H a standard real subspace.

5/27



Field operators
» T atwist. Left field operator on Fr(H):

X7(f) := ar(f) + ax(f), VieH.

» ar(f): conjugate linear, a%(f): linear, so 2a%(f) = X7(f) — iX(if), and
{X7(f) : fe H}' = {a%(f) : fe H}" = B(Fr(H)).

> Want Q € Hr = CQ to be standard (cyclic and separating),
therefore we only take "half’ of the vectors:

L1(H) :={X7#(f): fe H}, HC H a standard real subspace.

» For standard H, it is more convenient to write
X1(f) == ar(Suf) + a7(f), fe H+iH

Definition
For a standard (real) subspace HC H, and a twist T € B(H ® H)s.a., the
T-twisted Araki-Woods algebra is L7(H) := {X7(f) : f€ H}".
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Standard subspace

Definition

A real linear subspace H C H is a standard subspace if
» His a closed real subspace of (H,Re(-,)).
» His cyclic: H+ iH is dense in H.
» His separating: HNiH = {0}.
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A real linear subspace H C H is a standard subspace if
» His a closed real subspace of (H,Re(-,)).
» His cyclic: H+ iH is dense in H.
» His separating: HNiH = {0}.

Example

1) R" C C"; 2) (M,H) von Neumann algebra with an vector state p = (£, -£), then H= Ms,alfR

is cyclic (separating) iff £ is cyclic (separating) for M. (H is called the standard representation if
both holds.)
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Standard subspace

Definition

A real linear subspace H C H is a standard subspace if
» His a closed real subspace of (H,Re(-,)).
» His cyclic: H+ iH is dense in H.
» His separating: HNiH = {0}.

Example
1) R" C C"; 2) (M,H) von Neumann algebra with an vector state p = (£, -£), then H= Ms,afR
is cyclic (separating) iff £ is cyclic (separating) for M. (H is called the standard representation if
both holds.)
Modular data for standard subspace H C #H: Involution Sy : H — H with
D(SH) = H+ iH,

Su(f+ig) = f—ig, Vf,g€ H.
Polar decomposition Sy = JHA1/2, then

ALH=H, VteR.

Ju anti-unitary and H' = JyH is the symplectic complement of H w.r.t Im(-,-).
[Shlyakhtenko'97] H C H standard subspace <= one-parameter orthogonal groups A;’t acting
on H.
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Examples of L1{(H)

H C H standard, L1(H) := {X7(f) = a(f) + a*(f) : f€ H}.
> T =F, Xg(f)'s satisfies CCR relation [X(f), X(g)] = 2Im(f, g) with respect to the
symplectic form 2Im(-,-) on H. (W(tf) := exp(itXg(f)) generates the Weyl's algebra.)
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Examples of L1{(H)

H C H standard, L1(H) := {X7(f) = a(f) + a*(f) : f€ H}.
» T =F, Xg(f)'s satisfies CCR relation [X(f), X(g)] = 2Im(f, g) with respect to the
symplectic form 2Im(-,-) on H. (W(tf) := exp(itXg(f)) generates the Weyl's algebra.)

> T = —F, X_g(f)'s satisfies CAR relation {X(f), X(g)} = 2Re(f, g) with respect to the
symmetric bilinear form 2Re(, -) on H. [Araki, Woods'69]

» T =0, Lo(H) is the free Araki-Woods algebra [Shlyakhtenko'97].
> T =gqF, L4r(H) is the g-Araki-Woods algebra [F.Hiai'01].

Example
If Ay =id, (H=C® H), then
> L_r(H) = M (C) when dimH = 2n;
Lr(H) is diffuse abelian;
Lo(H) =~ L(Fgim H);
Lqr(H) is the g-Gaussian algebra for —1 < g < 1.

vvyyyewy

If T(ei ® €) = gjjej @ ej, then L1(H) is the mixed g-Gaussian algebra.
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Separability of the vacuum Q for £(H)
We have choosen H C H to be a standard subspace, but when is Fr(#) a

standard representation of L7(H)? Namely, when is Q separating? (Q
obviously cyclic)
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Separability of the vacuum Q for £(H)
We have choosen H C H to be a standard subspace, but when is Fr(#) a

standard representation of L7(H)? Namely, when is Q separating? (Q
obviously cyclic)

Theorem (G. Lechner,R.C. da Silva'22+)

T a twist, H C H standard subspace. Assume T is compatible with H: [T, A;f, ® A;f,] =0. Then
Q is separating for L1(H) if and only if

> T 1Ty =TT T).

» T is crossing symmetric: for all 11, --- ,14 € H, the function on R

TU2on() = (Y2 © 1, (A @ D T(L® AL (3 © tha))

is holomorphic on the strip {z€ C: 0 < Im(z) < 1/2}
i . .
o+ 5) = (1@ s, (1@ AN T(AL" ® 1)(Jnb2 @ U3)).

Denote the contraction C(ﬂ & fg) = <5Hﬂ, f’2> C = id—1 RCR id"— 1L,
Proposition (YY)
T crossing symmetric iff C; T, = G 1.
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crossing symmetry <— G T,=GT;

For the tracial case, crossing symmetry is simple: Let {e;} be an
orthogonal basis of H, and Tg-’ = (ex ® e, € ® €)), then

I i
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crossing symmetry <— G T,=GT;

For the tracial case, crossing symmetry is simple: Let {e;} be an
orthogonal basis of H, and Tk’ (ex ® e, €/ ® ), then

I i

Apply C1 T to ey := e ® e @ ey, we get
G To(e) = 2, GiI(T;, k ceixy) = 2, O Ty =2, T; Jkey And similarly,
GTi(ejw) = >, G( T3 eka) >y Oy TZyex =3, Tfjkex-
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crossing symmetry <— G T,=GT;

For the tracial case, crossing symmetry is simple: Let {e;} be an
orthogonal basis of H, and Tk’ (ex ® e, €/ ® ), then

I i

Apply Ci T2 to ey := e ® e @ ey, we get
G To(ejr) = >, G(T; Jk \ Eixy) = ny&xTﬁfey 2oy key And similarly,
CTileg) = 2, QT egn) = 2., oy T ex = 3, Tfjkex-

» Therefore, crossing symmetry <— G To = G T1.

» In general, we need to be careful about Sy and A;_t, when taking
contractions, and use uniqueness of analytic extension.
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An example of (non g;;) crossing symmetric twist

Let H = M,(C), with inner product induced by Tr, and H= M,(C)s.,..
Denote m : M,(C) ® M,(C) — M,(C) the multiplication operator:

m(a® b) = ab.

Then T= cm*m is a crossing symmetric Yang-Baxter solution (due to
Frobenious structure of finite dimensional C*-algebras). And || T|| = cn.
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Conjugate variables and free Fisher information

Let (X1, -+, Xy) be a family of noncommutative random variables (not
necessarily self-adjoint).

The free Fisher information of (Xi,---, Xy) is defined via conjugate
variables =;:= 07(1 ® 1) w.r.t. the free difference quotient
0; - L2(M, ) = L2(M, ) ® L*(M, p):

(X)) =0l ®@1, 0Odpq) = (9ip) - g+ p- (0:q).

Free Fisher information:

d d
(X1, Xa) = Y IE5 =D lor(1 @ 1|3
i=1 i=1
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Example
(S1,--+,Sq) a family of freely independent semicircular variables, then

& =S;, hence B(X1, -, Xg) == S0 |23 =20, 1S3 =d
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Properties when conjugate variables exists
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Properties when conjugate variables exists

» Factoriality: A finite von Neumann algebra (W*(Xy,--- , Xy), 7) with
finite non-microstate free fisher information is non-I" Il; factor by
Dabrowski 2010. Nontracial cases: B. Nelson '17.
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Properties when conjugate variables exists

» Factoriality: A finite von Neumann algebra (W*(Xy,--- , Xy), 7) with
finite non-microstate free fisher information is non-I" Il; factor by
Dabrowski 2010. Nontracial cases: B. Nelson '17.

» Free monotone transport: If the conjugate variables (=1, -+ , =)
exists and ||=; — Xi||g is small, then by [Guionnet, Shlyakhtenko,'13]
there exists free monotone transport from M to L(Fy4), hence

WH (X, -, Xg) =~ L(Fy).

Nontracial cases: B. Nelson '15.

» Example: g-Gaussian for small g [Dabrowski'14], for all -1 < g <1
[Miyagawa, Speicher'22]. g-Araki-Woods algebras for —1 < g < 1 [A.
Skalski, M. Kumar, M. Wasilewski'23].
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From polynomials to tensors
Recall Ve H+ iH, X1(f) = a(f) + a7(f). The formula for a7

ar(H=a(N(1+Ti+--+T1---Ty)
where a(f) 1 i @ -+ @ f, = (f, 1) f2 @ fi is the free annihilation.
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From polynomials to tensors
Recall Ve H+ iH, X1(f) = a(f) + a7(f). The formula for a7

ar()=a(HA+To+---4+ To--- Ti)

where a(f) 1 i @ -+ @ f, = (f, 1) f2 @ fi is the free annihilation.
C(fog) = (Shg), and G =idy Ve Coid

aSHthe--@fi)=G(fe A @ f)
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From polynomials to tensors
Recall Ve H+ iH, X1(f) = a(f) + a7(f). The formula for a7
ar(h=a(A(1+Ti+--+ T - Ty)
where a(f) 1 i @ -+ @ f, = (f, 1) f2 @ fi is the free annihilation.
C(fog) = (Shg), and G =idy Ve Coid
aSHthe--@fi)=G(fe A @ f)
ar(SN(A® - @) =G4+ T+ 4+ T T 1)(fRALR - ® fx)

> X7(&)Q = & X7(&)XT(£)Q = X1(&1)& = (a%(&1) + ar(561))& =
§1 @& + (81,82)82.
>

X1(§1)XT(£2)XT(&)Q = (aT(&1) + a1(S61)) (&2 ® &3 + (562, 63)R2)
=61 ® & ® &34 (562,63)61 + a(S&1) (1 + T1)(2 ® &3)
=61 ® &2 ® &3+ (S€2,&3)61 + (S€1,€2)E3 + a(S61) T(§2 @ &3)
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From polynomials to tensors

Xr(&)2 =6 =

XrE)Xr&)Q=a o0&+ (&) =] | + ] |
XT(&)XT(£2) XT(£3)Q2 = §1 @ & @ §3 + (81, £2) &3 + (SE2, £3) &1 + a( SEr)

aialivs

T2 ® &)

X1(&)XT(&2)X7(£3)2 =

!
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X(§1)X7(62)X7(&3)Q = l—l l—h

X71(&)X7(&)X7(&) X&) = - - - + J—h n rT m
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From polynomials to tensors

Xr(&)2 =6 =

XrE)Xr&)Q=a o0&+ (&) =] | + ] |
XT(&)XT(£2) XT(£3)Q2 = §1 @ & @ §3 + (81, £2) &3 + (SE2, £3) &1 + a( SEr)

! 17 Fﬁ
X7(€)XT(&) XT(&3)XT(64)Q = +J—h n FT m

=+ a(561) T(&2 ® &3) @ &4 + a(S61)a(SE2) T(E3 @ §a)Q2 + (562, €3) (561, €4)Q2

In general, X7(&1) - - - X7(&k) is summing over partitions that only contain
pairings and singletons: P (k).

T2 ® &)

X1(&)XT(&2)X7(£3)2 =
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Wick product: From tensors to polynomials
Definition (Wick product)
For fie H, #(A ®--- ® f,) is the unique operator in L1(H) such that

(AR @H)A=HR - f,

That is: (A ® - -+ ® f,) the unique polynomial p(X(f) : f€ H) in X7(f)'s such
that Q=L ® - ® 1.
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Wick product: From tensors to polynomials
Definition (Wick product)
For fie H, #(A ®--- ® f,) is the unique operator in L1(H) such that

(AR @H)A=HR - f,

That is: (A ® - -+ ® f,) the unique polynomial p(X(f) : f€ H) in X7(f)'s such
that Q=L ® - ® 1.

X(&1)X(&2) = &1 ® &2 + (SHE1,62)Q
(61 ® &) = X(1)X(&2) — (Skér, &2)

X(&)X(&)X(&)Q = & @ & ® &3+ (S61,£2)E3 + (562, &3)& + a(S&1) T(& @ &3)

D(§1 ® & ® E3) = X(&1)X(62) X(&3) — (S1,62) X(&3)
—(562,83) X(€1) — X(a(S61) T(&2 ® &3))
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D(61 ® & ® &) = X(§1)X(€2)X(€3) — (SE1, €20 X(€3) — (S&2,&3) X(€1) — X(a(S€1) T(62 ® £3))

qs(glm@fs):[ J l—ﬂ l‘J ﬂ_rh
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D(61 ® & ® &) = X(§1)X(€2)X(€3) — (SE1, €20 X(€3) — (S&2,&3) X(€1) — X(a(S€1) T(62 ® £3))

qs(glm@ss):[ l l—ﬂ l J LT rh

GT (& ®6L®E) = a(S&) T(L®E&3) = = W(&G®&6086)
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D(61 ® & ® &) = X(§1)X(€2)X(€3) — (SE1, €20 X(€3) — (S&2,&3) X(€1) — X(a(S€1) T(62 ® £3))

D@L ®E) = [ J

G (61 @&®E) = a(S61) T(L2®83) J—h = W(&G®&6086)

wasasser--chy [« [Th
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D(61 ® & ® &) = X(§1)X(€2)X(€3) — (SE1, €20 X(€3) — (S&2,&3) X(€1) — X(a(S€1) T(62 ® £3))

D@L ®E) = l l - - -

G (61 @&®E) = a(S61) T(L2®83) = W(&G®&6086)

ﬁ.l*iﬂl

Number of crossings = Number of T;'s. Height of chord = Order of
contractions. Number of pairings = Number of C's

P(E1REERVERVEL) = +

J = W = GGTTaCiToT3T,Ts

b

— e

:

N e
wWe

7
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More about WT

m = {{1,6},{3,7},{2}, {4}, {5}} € Pr2(7).

= GGOGT3T4CGTrT3T4Ts

Tr’_

—e—
Ore—

N e
wWe
~
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More about WT

m = {{1,6},{3,7},{2}, {4}, {5}} € Pr2(7).

i ° °
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l 7r’ == C2C2T3T4C1 T2 T3 T4T5
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2 3 7

For g-Araki-Woods algebra, T = gF, this is precisely taking contraction of
(5¢1,86) and (5¢3,&7):
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More about WT

m = {{1,6},{3,7}, {2}, {4}, {5}} € Pr2(7).

i ° °
1

l 7r’ == C2C2T3T4C1 T2 T3 T4T5
6

2 3 7

For g-Araki-Woods algebra, T = gF, this is precisely taking contraction of
(5¢1,86) and (5¢3,&7):

Wfrf(fl ® - ®&7) = q°(S61, &6) (SE3, £7)(SEa, &s)

For general T, W;, involves information about all &, and there are no
explicit formula other than the definition G T3 T4Ci Tr T3 T4 Ts.

17 /27



Wick product: From tensors to polynomials
Theorem (Wick formula, Y)

QS(§1®~-®§,,):X< Z (—1)p(7r)|/|//_‘T(§1@...@&1)>7

mEP1,2(n)

where X is the linear map

Xm @ - @nk) = X7(n)X1(n2) - - - X7(nk) € L1(H) for all n; € H and
X(2) = 1. P12(n) partitions with only pairings and singletons.
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Wick product: From tensors to polynomials
Theorem (Wick formula, Y)

@(€1®...®§n)zx< Z (—1)p(7r)|/|//_‘T(§1@...@&1)>7

mEP1,2(n)

where X is the linear map

Xm @ - @nk) = X7(n)X1(n2) - - - X7(nk) € L1(H) for all n; € H and
X(2) = 1. P12(n) partitions with only pairings and singletons.

Lemma (W is Order invariant)

If T is braided and crossing symmetric: T1ToT1 = ToT1T,, CGi T = G Ty,
then WI is invariant under change of order (preserving the nesting).

R -t elnl




Computing 02({1 @ - - ® &)

Fix orthonomal basis (er, - - , eq) of H, X; = X7(e)).

ai¢(fl®"'®§7) = ...+ 0, 4+ ...
L] ‘
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Computing 0;P(&1 ® -+ - ® &)

Fix orthonomal basis (er, - - , eq) of H, X; = X7(e)).
0P ®---®&) = -+ 0 4o
€
= - + +

|dea: 0O; splits each m € P;2(n) into the left part and the right part.
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Computing 02({1 @ - - ® &)

Decompose partitions 7 w.r.t a singleton k:

e 73172(n)
{k' 7;"6 r:,:;(’;)f 77} — { k: singleton of 7, k € Np(7™)
 sing T € Pra(s(m™)), 7r € Pro(s(m™))

20 /27



Computing 02({1 @ - - ® &)

Decompose partitions 7 w.r.t a singleton k:

™ € P12(n)

{ gl o } — { k: singleton of 7™, k € Np(7™) }

k: singleton of 7 71 € Pra(s(m™)), 7r € P12(s(7™))

- L = et

VDD k
k

20 /27



Computing 02({1 @ - - ® &)

Decompose partitions 7 w.r.t a singleton k:

™ € P12(n)

{ gl o } — { k: singleton of 7™, k € Np(7™) }

k: singleton of 71 € Pra(si(x™), 7 € Pro(s(n™))
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Computing 02({1 @ - - ® &)

Decompose partitions 7 w.r.t a singleton k:

e 73172(n)
{k' 7;"6 |7e3':é>2r1(,:))f 77} — { k: singleton of 7, k € Np(7™)
. g T € 73172(51(71',")), T € P1,2(5r(7rm))

- L = et

VDD
k

Wl = (W] @idy @ W] )W,

20 /27



Computing 02({1 @ - - ® &)

W] = (W] ®@idy @ W)W/,

Set VE:A® - ® fy '—><ei7fk>(f1 @ 1) ® (fk+1®"'®f)
0p=0; Y (1) XoWl=> Y (-1)"XoViW]
71—EPI 2(”) kGS(ﬂ') 7T€P1 2(”)

—Z > DD (1) Xo VHW], @idy @ W] )W,

©m kenp(x™) T T
=5 3 SN (-1 Xo (WL e WVEWL,
™ kenp(m™) ™ T

apply inverse formula for @ for the sum 7, 7., (and identify polynomials as
its L2-image)

=5 5 (~yvEwh

™ kenp(wm)

_Z Z vk’WT

T kenp(r) 21/27



P ®---®E,) and Z;

Corollary (Y)

If T is braided and crossing symmetric,

Z Z |vk’ WT

TEP 2(/7) keﬁp(ﬂ)

where K is the position of k in the singletons s(r).
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P ®---®E,) and Z;

Corollary (Y)

If T is braided and crossing symmetric,

Z Z |vk’ WT

TEP 2(/7) keﬁp(ﬂ)

where K is the position of k in the singletons s(r).
Need to compute =; = 0/(Q2 @ Q). Note that

(e ® - ®8),Q0Q) = 2(1 ) VIW (G @ 9&),220)
= Z WG @ ®E),e)

We only need to focus on 7 with the only singleton k € Np(7).

22 /27



Computing =;

B(2m+1): m € P12(2m+ 1) with the only singleton k= m € Np(7):
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Computing =;

B(2m+1): m € P12(2m+ 1) with the only singleton k= m € Np(7):

PITT T

k

We must have: ANY i< kIS PAIRED WITH A j > k. Same phenomenon
happened as in [Miyagawa,Speicher '22] for g-Gaussian.
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Computing =;

B(2m+1): m € P12(2m+ 1) with the only singleton k= m € Np(r):

PITT T

k

We must have: ANY i< kIS PAIRED WITH A j > k. Same phenomenon
happened as in [Miyagawa,Speicher '22] for g-Gaussian.
In particular, for all such m, it has '"MAXIMAL'" Crossing Number on the

left:

S m(m2—|— 1)

wer(m) > = Wi < [Tt/

23 /27



i

Continue the computation, we obtain:
Theorem (Y)

Let H be a finite dimensional complex Hilbert space with a standard
subspace H C H, and T be a compatible crossing symmetric and braided
twist on H with || T|| < 1. Let (e1,- - ,eq) be a orthonomal basis of H.

Then the conjugate system (=1,--- ,=4) for (X7(e1), -+, X1(eq)) exists
and

i=> (D"Prapn Y, (W)'e, VI<i<d,
n=0 r€B(2n+1)

where the adjoint (WI)* is taken in the untwisted norm.
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Continue the computation, we obtain:
Theorem (Y)

Let H be a finite dimensional complex Hilbert space with a standard
subspace H C H, and T be a compatible crossing symmetric and braided
twist on H with || T|| < 1. Let (e1,- - ,eq) be a orthonomal basis of H.

Then the conjugate system (=1,--- ,=4) for (X7(e1), -+, X1(eq)) exists

and
o0

=i Z T2n+1 Z (WI)*e,-, Vl<i<d,

n=0 TEB(2n+1)

where the adjoint (WI)* is taken in the untwisted norm.

Key observation: [[(WI)*|| = |WZ|| < || T||™(m+1)/2 ~ e~ beats all other
terms!!!

24 /27



Conclusion
Corollary (Factoriality)

If2<dimH < oo, ||T|| <1, let G<R% be the closed subgroup generated by Sp(Ap), then
then L1(H) is a factor of type

I, if G=R}

iy, fG=X0<A<1
I, if G={1}.
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If2<dimH < oo, ||T|| <1, let G<R% be the closed subgroup generated by Sp(Ap), then
then L1(H) is a factor of type

My, if G=RX
iy, ifG=X,0<x<1
Iy, ifG={1}.

This + [da Silva, Lechner'22]’s result for dim H = oo shows:
Corollary

L1(H) is a factor as soon as dimH > 2 and || T|| < 1.
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Conclusion

Corollary (Factoriality)

If2<dimH < oo, ||T|| <1, let G<R% be the closed subgroup generated by Sp(Ap), then
then L1(H) is a factor of type

Ih, if G =R}
iy, fG=X0<A<1

I, if G={1}.

This + [da Silva, Lechner'22]’s result for dim H = oo shows:
Corollary
L1(H) is a factor as soon as dimH > 2 and || T|| < 1.

Corollary (Free monotone transport)

For HC H with 2 < dimH < oo, there is a constant qy > 0 depending on
H, such that for all || T|| < qn,

L1(H) = Lo(H).

25 /27



Questions

» Can we use the formula for =; to concretely compute the monotone
tranport function (even for g-Gaussian)?
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Can we use the formula for =; to concretely compute the monotone
tranport function (even for g-Gaussian)?

For dim H = oo, what conditions on T can implies

non- W*-Akemann-Ostrand? (Known for g-Gaussian by [Caspers '22])

For dim H = oo, the g-Gaussian algebra is not biexact w.r.t. compact
operators, but is it biexact w.r.t. some larger boundary piece X?

For dim H = oo, what conditions on T is sufficient for free monotone
tranport (of infinite variables)? (Certain conditions known for
qi-Gaussian by [Nelson, Zeng '15])

Is £L7(H) Connes embedable? (Known for g;; Gaussian [Speicher '93])
(If so, using Dabrowski's results on Fisher information, tracial £1(H)
must have maximal microstate free entropy dimension.)
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Can we use the formula for =; to concretely compute the monotone
tranport function (even for g-Gaussian)?

For dim H = oo, what conditions on T can implies
non- W*-Akemann-Ostrand? (Known for g-Gaussian by [Caspers '22])

For dim H = oo, the g-Gaussian algebra is not biexact w.r.t. compact
operators, but is it biexact w.r.t. some larger boundary piece X?

For dim H = oo, what conditions on T is sufficient for free monotone
tranport (of infinite variables)? (Certain conditions known for
qi-Gaussian by [Nelson, Zeng '15])

Is £L7(H) Connes embedable? (Known for g;; Gaussian [Speicher '93])
(If so, using Dabrowski's results on Fisher information, tracial £1(H)
must have maximal microstate free entropy dimension.)

What about £71(H) when || T|| =1 (and when T > 0)? (There are
examples: L1(H) is still free group factor but || T]| = 1.)
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Thank you!
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