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Let G be a group. A function φ : G→ C is positive definite if for
any number k ∈ N

k∑
i,j=1

zizjφ(g−1
j gi) ≥ 0

for all z1, . . . , zk ∈ C, g1, . . . ,gk ∈ G.
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1 1979 – Haagerup proved that the function

g → q`S(g)

is positive definite for −1 ≤ q ≤ 1 on the free group FN , for
N ≥ 2, where

`S := is the minimal number of generators

Case N = 1 was done by Poisson.
2 1988 – Bożejko, Januszkiewicz and Spatzier, were

studying similar problem and they proved that the function
g → q`S(g) is positive definite for all Coxeter groups.

3 1996, 2003 – This result was generalized to
multi-parameters and also other variants of the Coxeter
function (colour-length) by Bożejko, Szwarc and Speicher
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All the considered functions share two properties
1 they are positive definite on the continuos set −1 ≤ q ≤ 1,
2 they are not (generically) invariant by conjugation i.e.

it is not true that φ(g) = φ(hgh−1) for any g,h ∈ G.
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The most natural way to modify the Coxeter function in order to
obtain its analog which is central on G is to replace the Coxeter
length `S by the reflection length `R,

`R = the minimal number of reflections
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Central functions

1 1964 Thoma obtain complete characterization of central
normalized positive defined function in the case of the
infinite symmetric group S∞

2 1974, 1976 Voiculescu in the case of infinite dimensional
Lie groups U(∞),SO(∞)

3 1981 Vershik and Kerov
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Motivation

In the case of G = S∞ this length `R(σ) is given by the minimal
number of transpositions

`R(σ) : = min{τ1, . . . , τn ∈ T : σ = τ1 · · · τn}
= n − number of cycles of σ.

where T is the set of all transpositions.
From Thoma result follows that

fq(σ) := q`R(g)

is positive definite if and only if

q =
ε

N
, N ∈ N and ε ∈ {−1,0,1}.

Bożejko and Guta in 2001 used this positive definite function to
construct a Gaussian operator.
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Coxeter group of type B

The Coxeter group of type B B(n) (= hyperoctahedral group) is
the group of permutations on

{n̄, . . . , 1̄,1, . . . ,n}
satisfying σ(̄i) = σ̄(i), where we use the convention that i = −i
for example

1 = −1

−1 = 1.

Equivalently B(n) is the group of symmetries of the
n-dimensional hypercube

B(n) = {σ ∈ S(±1, . . . ,±n) | σ(−i) = −σ(i)}.
W. Ejsmont join work with M. Bożejko, M. Dołęga and Ś. Gal Positive definite reflection length in type B



Positive definite functions
The main theorem

Cyclic Fock space of type B
Orthogonal polynomials

Coxeter group of type B
Central functions

Example B(6)

σ =
(

6̄ 5̄ 4̄ 3̄ 2̄ 1̄ 1 2 3 4 5 6
6̄ 3̄ 1̄ 5 4 2 2̄ 4̄ 5̄ 1 3 6

)
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We have two types of cycles:
1 cycles which do not contain i and ī for any i ,
2 cycles in which i is an element if and only if ī is an element.
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Cycles of the first type come in natural pairs, and instead of

(i1, i2, . . . , ik )(̄i1, ī2, . . . , īk ),

we write (i1, i2, . . . , ik ) and call it a positive cycle.

Cycles of the second type are of the form

(i1, i2, . . . , ik , ī1, ī2, . . . , īk ).

We shorten that to (i1, i2, . . . , ik )− and call it a negative cycle.
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For example, the permutation

4̄ 7→ 2̄, 3̄ 7→ 1, 2̄ 7→ 4, 1̄ 7→ 3, 1 7→ 3̄, 2 7→ 4̄, 3 7→ 1̄, 4 7→ 2

is written as (1, 3̄)(1̄,3)(2, 4̄, 2̄,4) = (1, 3̄)(2, 4̄)−.
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Example B(6)

σ =
(

6̄ 5̄ 4̄ 3̄ 2̄ 1̄ 1 2 3 4 5 6
6̄ 3̄ 1̄ 5 4 2 2̄ 4̄ 5̄ 1 3 6

)
σ = (1,2,4)(1,2,4)(3,5,3,5)(6)(6) = (1,2,4)(3,5)−(6)
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The conjugacy classes of B(n) are identified with pairs of
partitions

(ρ+, ρ−) = (ρ+
1 . . . ρ

+
k , ρ

−
1 . . . ρ

−
m)

of total size at most n, where the first partition ρ+ has no parts
equal to 1, i.e.

|ρ+|+ |ρ−| =
∑

i

ρ+
i +

∑
j

ρ−j ≤ n; ρ+
i > 1
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For example, the conjugacy class of
(1,5, 2̄)(4,7)(6; 8̄)−(3)− is (32; 21) ⊂ B(6);

(1,5, 2̄)(9,10,11)(4,7)(6; 8̄)−(3)− is (332; 21) ⊂ B(11);

(1,5, 2̄)(9̄,11)(4,7)(10)(6; 8̄)−(3)− is (322; 21) ⊂ B(11).
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Reflections=Transpositions

Positive reflections (i , j)(̄i , j̄) for i 6= j̄ we denote it by R+

Negative reflections (i , ī) we denote it by R−
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Suppose that σ ∈ B(n) is expressed as a product of reflections,
where the number of reflections is minimal in non-mixed
factorization

σ = r1 · · · rk , ri ∈ R,

Def. non-mixed factorization means that

ri ∩ rj = ∅ for all reflections ri and rj appearing in σ.

Let

`R+(σ) = The number of positive reflections ri appearing
in the minimal, non-mixed factorization,

`R−(σ) = The number of negative reflections ri appearing
in the minimal, non-mixed factorization.
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We define the signed reflection function by

φq+,q− : B(n)→ C

φq+,q−(σ) := q
`R+ (σ)

+ q
`R− (σ)

− ,

were q+,q− ∈ C be parameters.
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Remark

We can not put

`R+(σ) = The minimal number of positive reflections ri

appearing in the factorization of σ,
`R−(σ) = The minimal number of negative reflections ri

appearing in the factorization of σ.

which is direct analog of `R(g).
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To see this, we consider

σ =
(

2̄ 1̄ 1 2
2 1 1̄ 2̄

)
∈ B(2)

which is the product of two negative reflections

σ = (1,1)(2,2)

but also as the product of two positive reflections

σ = (1,2)(1,2)(1,2)(1,2).

W. Ejsmont join work with M. Bożejko, M. Dołęga and Ś. Gal Positive definite reflection length in type B



Positive definite functions
The main theorem

Cyclic Fock space of type B
Orthogonal polynomials

Coxeter group of type B
Central functions

Note that we have a ascending tower of groups:

B(1) < B(2) < . . . ,

which allows to define the infinite group B(∞) as the inductive
limit of this tower.
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Definition
A character φ : B(∞)→ C is a central, positive-definite function
which takes value 1 on the identity.

Definition
A character φ : B(∞)→ C is called extreme if it is extreme point
of all normalized positive-definite central function on the group.
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Theorem
Let q+,q− ∈ C. The following conditions are equivalent:

1 The function φq+,q− is positive definite on B(∞);

2 The function φq+,q− is a character of B(∞);

3 The function φq+,q− is an extreme character of B(∞);

4 for M,N ∈ N,M + N 6= 0, ε ∈ {1,−1}

q+ =
ε

M + N
,q− =

M − N
M + N

discrete,

or q+ = 0,−1 ≤ q− ≤ 1 continuous.
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Proof:
uses a representation theory of B(n);
Frobenius formula;

We can apply the Frobenius formula to show that the reflection
function g → q`R(g) on the infinite symmetric group S∞ is
positive definite if and only if q = ε

N , N ∈ N and ε ∈ {−1,0,1}.
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We assume that the parameters q+ and q− are as in the main
Theorem.

Let HR be a separable real Hilbert space and let H be its
complexification with the inner product 〈·, ·〉.

We consider the Hilbert space K := H ⊗ H, with the inner
product

〈x ⊗ y , ξ ⊗ η〉K = 〈x , ξ〉〈y , η〉.

We define a natural action of B(n) on Kn := H⊗2n by setting:

σ : Kn → Kn

xn ⊗ · · · ⊗ x1 ⊗ x1 ⊗ · · · ⊗ xn 7→ xσ(n) ⊗ · · · ⊗ xσ(1) ⊗ xσ(1) ⊗ · · · ⊗ xσ(n)
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1 F :=
⊕∞

n=0Kn =
⊕∞

n=0 H⊗2n;

2 P(n)
q+,q− :=

∑
σ∈B(n) φq+,q−(σ)σ, n ≥ 1;

3 For x ∈ Kn and y ∈ Km we deform inner product by

〈x,y〉q+,q− := δn,m〈x,P(m)
q+,q−y〉0,0

4 Fq+,q−(K) is denote the algebraic full Fock space with the
inner product 〈·, ·〉q+,q−

5 For x ⊗ y ∈ K we define

b∗q+,q−(x ⊗ y)Kn → Kn+1

η 7→ x ⊗ η ⊗ y .

and bq+,q−(x ⊗ y) be its adjoint operator with respect to the
inner product 〈·, ·〉q+,q− .
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The cyclic commutation relation of type B

For x ⊗ y , ξ ⊗ η ∈ K we have

bq+,q−(x ⊗ y)b∗q+,q−(ξ ⊗ η) = 〈x , ξ〉〈y , η〉 id + q−〈x , η〉〈y , ξ〉 id

+ Γq+(|ξ〉〈x | ⊗ |η〉〈y |).

where Γq+ is the deformation of differential second quantisation
operator.
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We denote by Psym
2 (n) the subset of pair partitions of

n̄, . . . , 1̄,1, . . . ,n,

whose every block is pair such that they are symmetric π = π,
but every pair B ∈ π is different then its symmetrization B,
i.e.. B 6= B.
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Let π ∈ Psym
2 (n). There exists a unique non-crossing partition

π̂ ∈ Psym
2 (n), such that the positive/negative pairs of π and π̂

are coincide;
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1. the set of right legs of the positive pairs of π and π̂ coincide;
2. the set of left legs of the negative pairs of π and π̂ coincide;
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We distinguish two different kinds of cycles: positive and
negative, which resembles the description of the cycles in the
B(n)
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The operator

G(x ⊗ y) = bq+,q−(x ⊗ y) + b∗q+,q−(x ⊗ y), x , y ∈ HR,

is called the cyclic Gaussian operator of type B.
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Wick formula

Suppose that x1, . . . , x2n ∈ HR, x1̄, . . . , x2n ∈ HR, then

ϕ(G(x2n⊗2n) . . .G(x1̄ ⊗ x1)) =
∑

π∈Psym
2 (2n)

qnegc(π)
− qn−c(π)

+

×
∏

{i,j}∈Pair(π)

〈xi , xj〉,

where
1 c(π) is the number of cycles of π;
2 negc(π) is the number of negative cycle of π;
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The Askey-Wimp-Kerov distribution νc is the measure on R,
with Lebesgue density

1√
2πΓ(c + 1)

|D−c(ix)|−2 x ∈ R, c ∈ (−1,∞)

where D−c(z) is the solution to the differential Weber equation:

d2y
dz2 +

(
1
2
− c − z2

4

)
y = 0,

satisfying the initial conditions:

D−c(0) =
Γ
(1

2

)
2−c/2

Γ
(1+c

2

) and D′−c(0) =
Γ
(
−1

2

)
2−(c+1)/2

Γ
( c

2

) .
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The orthogonal polynomials (Hn(t))∞n=0, with respect to νc are
given by the recurrence relation:

tHn(t) = Hn+1(t) + (n + c)Hn−1(t), n = 0,1,2, . . .

with H−1(t) = 0, H0(t) = 1.
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Let µq+,q− be the probability distribution of G(x ⊗ x), with
respect to the vacuum state. Then µq+,q− is equal to:

Askey-Wimp-Kerov distribution for q+ > 0;

the semi-circle distribution for q+ = 0;

discrete measure of finite support for q+ < 0;
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From above, we conclude

#{Cyc(π) | π ∈ Psym
2 (2n)} =

(2n)!

n!
= 2n moment of N(0,2).
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Another interesting specialization is given by q+ = 0, which
gives us ∑

π∈Psym
2 (2n):

π contains cycles of size 2

qnegc(π)
− = Cn(1 + q−)n

where Cn = 1
n+1

(2n
n

)
.
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Thank you for your attention
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