Free integral calculus

Franz Lehner and Kamil Szpojankowski

Probabilistic Operator Algebra Seminar, UC Berkeley

4th December 2023

Linearization

Why linearization shows up?

Consider $\psi=(1-z(X Y+Y X))^{-1}$. We have $\mathbb{E}_{X}(\psi)=\beta_{Y}^{b}(\psi)+\left(\beta_{Y}^{b} \otimes \mathbb{E}_{X}\right)[\vec{\delta} X(\psi)]$.
We have $\vec{\delta} X(X Y+Y X)=1 \otimes X Y+Y \otimes X$, hence $\vec{\delta} X(\psi)=z \psi \otimes X Y \psi+z \psi Y \otimes X \psi$.

Two functionals:
Boolean cumulants with products as entries

Two functionals

Blocked cumulant
Recall that on $(\mathbb{C}\langle X, Y\rangle, \mu)$ we defined blocked Boolean cumulant β_{Y}^{b} linear functional by prescribing its values on monomials, we define

$$
\beta_{Y}^{b}\left(Y^{k_{0}} X^{k_{1}} Y^{k_{2}} \ldots Y^{k_{2 n}}\right)=\beta_{2 n+1}\left(Y^{k_{0}}, X^{k_{1}}, Y^{k_{2}}, \ldots, Y^{k_{2 n}}\right)
$$

Two functionals

Fully factored cumulant

On $(\mathbb{C}\langle X, Y\rangle, \mu)$ we define the fully factored Boolean cumulant β^{δ} by prescribing its values on monomials, for $X_{i} \in\{X, Y\}$ we define

$$
\begin{aligned}
\beta_{Y}^{\delta}(1) & =1 \\
\beta_{Y}^{\delta}\left(X_{i_{1}} X_{i_{2}} \cdots X_{i_{k}}\right) & =\beta_{k}\left(X_{i_{1}}, X_{i_{2}}, \ldots, X_{i_{k}}\right) .
\end{aligned}
$$

if $X_{i_{1}}=X_{i_{k}}=Y$, and $\beta_{Y}^{\delta}(P)=0$ for other monomials.

Boolean cumulants of products

Proposition

Let $a_{1}, a_{2}, \ldots, a_{n} \in \mathcal{A}$ be random variables then

$$
\begin{aligned}
& \quad \beta_{m+1}\left(a_{1} a_{2} \cdots a_{d_{1}}, a_{d_{1}+1} a_{d_{1}+2} \cdots a_{d_{2}}, \ldots, a_{d_{m}+1} a_{d_{m}+2} \cdots a_{n}\right)=\sum_{\substack{\pi \in \operatorname{Intt(n)} \\
\pi \vee \rho \rho 1_{n}}} \beta_{\pi}\left(a_{1}, a_{2}, \ldots, a_{n}\right), \\
& \text { where } \rho=\left\{\left\{1,2, \ldots, d_{1}\right\},\left\{d_{1}+1, d_{1}+2, \ldots, d_{2}\right\}, \ldots,\left\{d_{m}+1, \ldots, n\right\}\right\} \in \operatorname{Int}(n) .
\end{aligned}
$$

Boolean cumulants with products as entries

Corollary

Let $a_{1}, a_{2}, \ldots, a_{n} \in \mathcal{A}$ consider partition
$\rho=\left\{\left\{1, \ldots, d_{1}\right\},\left\{d_{1}+1, \ldots, d_{2}\right\}, \ldots,\left\{d_{m}+1, \ldots, n\right\}\right\} \in \operatorname{Int}(n)$. We write
$\rho=\left\{B_{1}, B_{2}, \ldots, B_{m+1}\right\}$, where blocks are ordered in natural order. For $j \in\{1, \ldots, n\}$ denote by $\rho(j)$ the number of block containing j, i.e. we have $\rho(j)=k$ if $j \in B_{k}$, then

$$
\begin{aligned}
& \beta_{m+1}\left(a_{1} a_{2} \cdots a_{d_{1}}, a_{d_{1}+1} a_{d_{1}+2} \cdots a_{d_{2}}, \ldots, a_{d_{m}+1} a_{d_{m}+2} \cdots a_{n}\right) \\
& j \in\{1, \ldots, n\} \backslash\left\{d_{1}, d_{2}, \ldots, d_{m}\right\} \\
& \beta_{j}\left(a_{1}, a_{2}, \ldots, a_{j}\right) \beta_{m-\rho(j)+1)}\left(a_{j+1} a_{j+2} \cdots a_{d_{\rho(j)}}, \ldots, a_{d_{m}+1} \cdots a_{n}\right) .
\end{aligned}
$$

Product as entries via derivatives

Products via derivatives

For any $P \in \mathbb{C}\langle X, Y\rangle$ we have

$$
\begin{aligned}
\beta_{x}^{b}(P) & =\epsilon(P)+\left(\beta_{x}^{\delta} \otimes \beta_{X}^{b}\right)\left(\overleftarrow{\delta}_{x} P\right) \\
& =\epsilon(P)+\left(\beta_{X}^{b} \otimes \beta_{X}^{\delta}\right)\left(\vec{\delta}_{x} P\right)
\end{aligned}
$$

Two functionals:
Boolean cumulants with free entries

VNRP

Theorem (Fevrier, Mastnak, Nica, Sz. and Jekel, Liu)

Subalgebras $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{s} \subseteq \mathcal{M}$ of a $n c p s(\mathcal{M}, \varphi)$ are free if and only if for any colouring $c:\{1, \ldots, n\} \rightarrow\{1, \ldots, s\}$ we have

$$
\beta_{n}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\sum_{\pi \in N C^{\text {irr }}(n) \text { with VNRP }} \beta_{\pi}\left(a_{1}, a_{2}, \ldots, a_{n}\right)
$$

whenever $a_{i} \in \mathcal{A}_{c(i)}$. Here a partition $\pi \in N C^{i r r}(n)$ is said to have VNRP if $\pi \leq \operatorname{ker} c$ and every inner block is covered by a block of different colour, i.e., c induces a proper coloring on the nesting tree of π.

VNRP for alternating entries

Proposition

Let $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $\left\{b_{1}, b_{2}, \ldots, b_{n-1}\right\}$ be free, $n \geq 1$. Then

$$
\begin{aligned}
& \beta_{2 n-1}\left(a_{1}, b_{1}, \ldots, a_{n}, b_{n-1}, a_{n}\right) \\
& \quad=\sum_{k=2}^{n} \sum_{1=j_{1}<j_{2}<\cdots<j_{k}=n} \beta_{k}\left(a_{j_{1}}, a_{j_{2}}, \ldots, a_{j_{k}}\right) \prod_{\ell=1}^{k-1} \beta_{2\left(j_{\ell+1}-j_{\ell}\right)-1}\left(b_{j_{l}}, a_{j_{\ell}+1}, \ldots, a_{j_{\ell+1}-1}, b_{j_{\ell+1}-1}\right) .
\end{aligned}
$$

VNRP for alternating entries

Lemma

Suppose $\mathcal{A}, \mathcal{B} \subseteq \mathcal{M}$ are free and let $a_{1}, a_{2}, \ldots, a_{n} \in \mathcal{A}$ and $b_{1}, b_{2}, \ldots, b_{n-1} \in \mathcal{B}$. Assume further that for each $j=1,2, \ldots, n-1$ we have $b_{i}=c_{1}^{(i)} \cdots c_{j_{i}}^{(i)}$ with $c_{1}^{(i)}, \ldots, c_{j_{i}}^{(i)} \in \mathcal{B}$, then we have

$$
\beta_{2 n-1}\left(a_{1}, b_{1}, a_{2}, \ldots, b_{n-1}, a_{n}\right)=\beta_{n+j_{1}+\ldots+j_{n-1}}\left(a_{1}, c_{1}^{(1)}, \ldots, c_{j_{1}}^{(1)}, a_{2}, \ldots, c_{1}^{(n-1)}, \ldots, c_{j_{n-1}}^{(n-1)}, a_{n}\right) .
$$

VNRP via derivatives

VNRP via derivatives

For any $P \in \mathbb{C}\langle X, Y\rangle$ we have

$$
\beta_{X}^{\delta}(P)=\epsilon(P)+\sum_{k=1}^{\infty} \beta_{k}(X)\left[\epsilon \otimes\left(\beta_{Y}^{b}\right)^{\otimes(k-1)} \otimes \epsilon\right]\left(\partial_{X}^{k} P\right)
$$

Example additive convolution

$\Psi=(1-z(X+Y))^{-1}=\sum_{n=0}^{\infty}(z(X+Y))^{n}$.

First formula

$$
\beta_{X}^{b}(P)=\epsilon(P)+\left(\beta_{X}^{b} \otimes \beta_{X}^{\delta}\right)(\vec{\delta} \times P)
$$

Taking derivatives we obtain

$$
\vec{\delta}_{X}(\Psi)=1+z \Psi \otimes X \Psi, \quad \vec{\delta}_{Y}(\Psi)=1+z \Psi \otimes Y \Psi .
$$

Thus

$$
\beta_{X}^{b}(\Psi)=1+z \beta_{X}^{b}(\Psi) \beta_{X}^{\delta}(X \Psi), \quad \beta_{Y}^{b}(\Psi)=1+z \beta_{Y}^{b}(\Psi) \beta_{Y}^{\delta}(Y \Psi) .
$$

Hence we obtain

$$
\beta_{X}^{b}(\Psi)=\left(1-z \beta_{X}^{\delta}(X \Psi)\right)^{-1}, \quad \beta_{Y}^{b}(\Psi)=\left(1-z \beta_{Y}^{\delta}(Y \Psi)\right)^{-1}
$$

Example additive convolution

Second formula

$$
\beta_{X}^{\delta}(P)=\epsilon(P)+\sum_{n=1}^{\infty} \beta_{n}(X)\left[\epsilon \otimes\left(\beta_{Y}^{b}\right)^{\otimes(n-1)} \otimes \epsilon\right]\left(\partial_{X}^{n} P\right)
$$

$$
\partial_{X}^{n}(X \Psi)=z^{n-1} 1 \otimes \Psi^{\otimes n}+z^{n} X \Psi \otimes \Psi^{\otimes n}, \quad \partial_{Y}^{n}(Y \Psi)=z^{n-1} 1 \otimes \Psi^{\otimes n}+z^{n} Y \Psi \otimes \Psi^{\otimes n} .
$$

Thus

$$
\begin{aligned}
& \beta_{X}^{\delta}(X \Psi)=\sum_{n=1}^{\infty} \beta_{n}(X) \beta_{Y}^{b}(\Psi)^{n-1} z^{n-1}=\widetilde{\eta}_{X}\left(z \beta_{Y}^{b}(\Psi)\right), \\
& \beta_{Y}^{\delta}(Y \Psi)=\sum_{n=1}^{\infty} \beta_{n}(Y) \beta_{X}^{b}(\Psi)^{n-1} z^{n-1}=\widetilde{\eta}_{Y}\left(z \beta_{X}^{b}(\Psi)\right) .
\end{aligned}
$$

Finally we obtain the following system of equations

$$
\beta_{X}^{\delta}(X \Psi)=\tilde{\eta}_{X}\left(z\left(1-z \beta_{Y}^{\delta}(Y \Psi)\right)^{-1}\right), \quad \beta_{Y}^{\delta}(Y \Psi)=\widetilde{\eta}_{Y}\left(z\left(1-z \beta_{X}^{\delta}(X \Psi)\right)^{-1}\right)
$$

Statement on matrices

Proposition

Let $\mathcal{M}=M_{N}(\mathbb{C}\langle X, Y\rangle)$ and X, Y free with respect to $\mu: \mathcal{M} \rightarrow \mathbb{C}$. Then

$$
\mathbb{E}_{X}^{(N)}[M]=\beta_{Y}^{b}(N)(M)+\left(\beta_{Y}^{b} \otimes \mathbb{E}_{X}\right)^{(N)}\left[\vec{\delta}_{X}^{(N)}(M)\right]
$$

Statement on matrices

Proposition

Let $M \in M_{N}(\mathbb{C}\langle X, Y\rangle)$, then we have

$$
\begin{aligned}
\beta_{X}^{b^{(N)}}(M) & =\epsilon^{(N)}(M)+\left(\beta_{X}^{\delta} \otimes \beta_{X}^{b}\right)^{(N)}\left(\overleftarrow{\delta}_{X}^{(N)} M\right) \\
& =\epsilon^{(N)}(M)+\left(\beta_{X}^{b} \otimes \beta_{X}^{\delta}\right)^{(N)}\left(\vec{\delta}_{X}^{(N)} M\right)
\end{aligned}
$$

Proposition

Let $M \in M_{N}(\mathbb{C}\langle X, Y\rangle)$, then

$$
\beta_{X}^{\delta^{(N)}}(M)=\epsilon^{(N)}(M)+\sum_{k=1}^{\infty} \beta_{k}(X)\left[\epsilon \otimes\left(\beta_{Y}^{b}\right)^{\otimes(k-1)} \otimes \epsilon\right]^{(N)}\left(\partial_{X}^{k(N)}(M)\right)
$$

Examples

Anti-commutator

Consider $P(X, Y)=X Y+Y X$ then one has

$$
\begin{aligned}
& \mathbb{E}_{X}\left[\left(1-z^{2}(X Y+Y X)\right)^{-1}\right]=\left(1-f_{Y, 43} z-z^{2} X\left(f_{Y, 33}+f_{Y, 44}\right)-f_{Y, 34} X^{2} z^{3}\right)^{-1}, \\
& \mathbb{E}_{Y}\left[\left(1-z^{2}(X Y+Y X)\right)^{-1}\right]=\left(1-f_{X, 12} z-z^{2} Y\left(f_{X, 11}+f_{X, 22}\right)-f_{X, 21} Y^{2} z^{3}\right)^{-1} .
\end{aligned}
$$

We find $u, v \in \mathbb{R}^{4}$ and $C_{X}, C_{Y} \in \mathbb{R}^{4 \times 4}$ such that
$\left(1-z^{2}(X Y+Y X)\right)^{-1}=u^{t}\left(1-z\left(C_{X} X+C_{Y} Y\right)\right)^{-1} v=u^{t} \Psi(z) v$.
Then $\mathbb{E}_{X}\left[\left(1-z^{2}(X Y+Y X)\right)^{-1}\right]=u^{t} \mathbb{E}_{X}^{(N)}(\Psi(z)) v$.
This result is obtained with the linearization involving the matrices

$$
C_{X}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] \quad C_{Y}=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Anti-commutator

We consider

$$
\begin{aligned}
& \tilde{F}_{X}=\beta_{X}^{\delta}{ }^{(N)}(X \Psi(z)) \\
& \tilde{F}_{Y}=\beta_{Y}^{\delta}{ }^{(N)}(Y \Psi(z))
\end{aligned}
$$

Using kernels of matrices C_{X} and C_{Y} we can reduce the size of matrices \tilde{F}_{X} and \tilde{F}_{Y}.

$$
F_{X}=\left[\begin{array}{cccc}
f_{X, 11} & f_{X, 12} & 0 & 0 \\
f_{X, 21} & f_{X, 22} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad F_{Y}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & f_{Y, 33} & f_{Y, 34} \\
0 & 0 & f_{Y, 43} & f_{Y, 44}
\end{array}\right]
$$

and show that they satisfy

$$
\left\{\begin{array}{l}
F_{X}=\widetilde{\eta}_{X}\left(z Q_{X}\left(1-z C_{Y} F_{Y}\right)^{-1} C_{X}\right) \\
F_{Y}=\widetilde{\eta}_{Y}\left(z Q_{Y}\left(1-z C_{X} F_{X}\right)^{-1} C_{Y}\right),
\end{array}\right.
$$

Anti-commutator and commutator

Nica and Speicher proved that for symmetric distributions anti-commutator and commutator in free variables have the same distribution.

Proposition

Assume that X, Y are free and symmetric, then

$$
\mathbb{E}_{X}\left[\left(1-z^{2} i(X Y-Y X)\right)^{-1}\right]=\mathbb{E}_{X}\left[\left(1-z^{2}(X Y+Y X)\right)^{-1}\right]
$$

Free convolution without freeness

Proposition

Let X, Y be free, X semicircle of variance 1 and Y symmetric Bernoulli, the element $X+i(X Y-Y X)$ has semicircle distribution with variance 3. Moreover elements X and $i(X Y-Y X)$ are not free, while $i(X Y-Y X)$ has semicircle distribution with variance 2.

Further examples in the paper

- $R=X(1-X-Y)^{-1} X$, we find conditional expectation of $\psi=(1-z R)^{-1}$ and distribution of R, when X, Y are symmetric Bernoulli elements.

- $P=X Z Y Z X$, we find conditional expectation of $\left(1-z^{5} X Z Y Z X\right)^{-1}$ on X, Y, taking all variables to be Bernoulli elements we have explicit formulas.

Further examples

$P=X Y Z+X Z Y+Y X Z+Y Z X+Z X Y+Z Y X$, where all variables are semicircle, the Cauchy transform satisfies

$$
2 G(z)^{4} z^{2}+8 G(z)^{3} z+8 G(z)^{2}-3 G(z) z^{5}+3 z^{4}=0
$$

Thank you!

