Bi-free probability and reflection positivity

Roland Speicher
Saarland University
Saarbrücken, Germany
arXiv: 2312.06813

Historical background

Mathematisches Forschungsinstitut Oberwolfach

Report No. 55/2017
DOI: 10.4171/OWR/2017/55

Reflection Positivity

Organised by
Arthur Jaffe, Harvard
Karl-Hermann Neeb, Erlangen
Gestur Olafsson, Baton Rouge
Benjamin Schlein, Zürich

26 November - 2 December 2017

Historical background

Mathematisches Forschungsinstitut Oberwolfach

Report No. 55/2017
DOI: 10.4171/OWR/2017/55
Reflection Positivity
Organised by
Arthur Jaffe, Harvard
Karl-Hermann Neeb, Erlangen
Gestur Olafsson, Baton Rouge
Benjamin Schlein, Zürich

26 November - 2 December 2017

Note on

Bi-free probability and reflection
positivity

Historical background

Obituary: K.R. Parthasarathy 1936-2023
Julv 16, 2023
Kalyanapuram Rangachari Parthasarathy, known to generations of mathematicians and probabilists simply as KRP, passed away on June 14 in New Delhi; he was 86. Professor Parthasarathy made numerous extremely deep contributions over a stunningly wide spectrum of mathematics: probability, quantum probability, graph theory, linear algebra, statistics and other mathematical domains. With his passing, India has lost an icon of 20th century mathematics.

Special Issue of IDAQP in honour of Prof K R Parthasarathy

Historical background

Mathematisches Forschungsinstitut Oberwolfach

Report No. 55/2017
DOI: 10.4171/OWR/2017/55

Reflection Positivity

Organised by
Arthur Jaffe, Harvard
Karl-Hermann Neeb, Erlangen
Gestur Olafsson, Baton Rouge
Benjamin Schlein, Zürich

26 November - 2 December 2017

Note on

Bi-free probability and reflection positivity

Obituary: K.R. Parthasarathy 1936-2023
July 16, 2023
Kalyanapuram Rangachari Parthasarathy, known to generations of mathematicians and probabilists simply as KRP, passed away on June 14 in New Delhi; he was 86. Professor Parthasarathy made numerous extremely deep contributions over a stunningly wide spectrum of mathematics: probability, quantum probability, graph theory, linear algebra, statistics and other mathematical domains. With his passing, India has lost an icon of 20th century mathematics.

Announcement:

Special Issue of IDAQP in honour of Prof K R Parthasarathy

Historical background

arXiv:2312.06813

BI-FREE PROBABILITY THEORY AND REFLECTION POSITIVITY

ROLAND SPEICHER

Abstract. We point out that bi-free product constructions respect reflection positivity.

Obituary: K.R. Parthasarathy 1936-2023
Julv 16, 2023
Kalyanapuram Rangachari Parthasarathy, known to generations of mathematicians and probabilists simply as KRP, passed away on June 14 in New Delhi; he was 86. Professor Parthasarathy made numerous extremely deep contributions over a stunningly wide spectrum of mathematics: probability, quantum probability, graph theory, linear algebra, statistics and other mathematical domains. With his passing, India has lost an icon of 20th century mathematics.

Special Issue of IDAQP in honour of Prof K R Parthasarathy

Historical background

arXiv:2312.06813

BI-FREE PROBABILITY THEORY AND REFLECTION POSITIVITY

ROLAND SPEICHER

Abstract. We point out that bi-free product constructions respect reflection positivity.

Probabilistic Operator Algebra Seminar

Organizer: Dan-Virgil Voiculescu

January 30 Roland Speicher, Saarland University Saarbruecken

Title: Bi-free probability and reflection positivity
I will recall the notions of reflection positivity (from algebraic quantum field theory) and point out that bi-free product constructions respect reflection positivity.

Obituary: K.R. Parthasarathy 1936-2023
July 16, 2023
Kalyanapuram Rangachari Parthasarathy, known to generations of mathematicians and probabilists simply as KRP, passed away on June 14 in New Delhi; he was 86. Professor Parthasarathy made numerous extremely deep contributions over a stunningly wide spectrum of mathematics: probability, quantum probability, graph theory, linear algebra, statistics and other mathematical domains. With his passing, India has lost an icon of 20th century mathematics.

Special Issue of IDAQP in honour of Prof K R Parthasarathy

What is reflection positivity?

Reflection positivity is
...some additional positivity, corresponding to a symmetry θ, in addition to the "usual" positivity.

What is reflection positivity?

Hilbert space setting

- Hilbert space $\mathcal{H},\langle\cdot, \cdot\rangle$
- unitary involution $\theta: \mathcal{H} \rightarrow \mathcal{H}$, i.e., $\theta^{2}=$ id and $\langle\theta(f), \theta(g)\rangle=\langle f, g\rangle$
- distinguished subspace $\mathcal{H}_{+} \subset \mathcal{H}$,
$\left(\mathcal{H}, \mathcal{H}_{+}, \theta\right)$ is called reflection positive if

$$
\langle\theta(f), f\rangle \geq 0 \quad \text { for all } f \in \mathcal{H}_{+}
$$

What is reflection positivity?

Hilbert space setting

- Hilbert space $\mathcal{H},\langle\cdot, \cdot\rangle$
- unitary involution $\theta: \mathcal{H} \rightarrow \mathcal{H}$, i.e., $\theta^{2}=$ id and $\langle\theta(f), \theta(g)\rangle=\langle f, g\rangle$
- distinguished subspace $\mathcal{H}_{+} \subset \mathcal{H}$, often $\mathcal{H}=\mathcal{H}_{+} \oplus \mathcal{H}_{-}, \mathcal{H}_{-}=\theta\left(\mathcal{H}_{+}\right)$
$\left(\mathcal{H}, \mathcal{H}_{+}, \theta\right)$ is called reflection positive if

$$
\langle\theta(f), f\rangle \geq 0 \quad \text { for all } f \in \mathcal{H}_{+}
$$

What is reflection positivity?

Hilbert space setting

$\left(\mathcal{H}, \mathcal{H}_{+}, \theta\right)$ is called reflection positive if

$$
\langle\theta(f), f\rangle \geq 0 \quad \text { for all } f \in \mathcal{H}_{+}
$$

Operator algebra setting

- operator algebra A with state $\tau: A \rightarrow \mathbb{C}$
- involution $\theta: A \rightarrow A$, anti-linear homomorphism, $\tau \circ \theta=\tau$
- distinguished subalgebra $A_{+} \subset A$
$\left(A, A_{+}, \theta\right)$ is called reflection positive if

$$
\tau(\theta(x) x) \geq 0 \quad \text { for all } x \in A_{+}
$$

What is reflection positivity?

Hilbert space setting
$\left(\mathcal{H}, \mathcal{H}_{+}, \theta\right)$ is called reflection positive if

$$
\langle\theta(f), f\rangle \geq 0 \quad \text { for all } f \in \mathcal{H}_{+}
$$

Operator algebra setting

- operator algebra A with state $\tau: A \rightarrow \mathbb{C}$
- involution $\theta: A \rightarrow A$, anti-linear homomorphism, $\tau \circ \theta=\tau$
- distinguished subalgebra $A_{+} \subset A$
$\left(A, A_{+}, \theta\right)$ is called reflection positive if

$$
\tau(\theta(x) x) \geq 0 \quad \text { for all } x \in A_{+}
$$

Often one also requires that A_{+}and $A_{-}:=\theta\left(A_{+}\right)$commute (or satisfy some other relations) and both together generate A

What is reflection positivity?

Hilbert space setting
$\left(\mathcal{H}, \mathcal{H}_{+}, \theta\right)$ is called reflection positive if

$$
\langle\theta(f), f\rangle \geq 0 \quad \text { for all } f \in \mathcal{H}_{+}
$$

Operator algebra setting
$\left(A, A_{+}, \theta\right)$ is called reflection positive if

$$
\tau(\theta(x) x) \geq 0 \quad \text { for all } x \in A_{+}
$$

Reflection positivity is ...
...some additional positivity, corresponding to a symmetry θ, in addition to the "usual" positivity.

Typical examples for symmetries θ

- reflection $t \rightarrow-t$

$$
\theta(f)(t)=f(-t)
$$

Typical examples for symmetries θ

- reflection $t \rightarrow-t$

$$
\theta(f)(t)=f(-t)
$$

- left-right exchange between algebra and commutant for von Neumann algebras M

$$
\begin{gathered}
A_{+}:=M, \quad A_{-}:=M^{\prime} \\
\theta: M \rightarrow M^{\prime}, \quad a \mapsto \theta(a)=J a J,
\end{gathered}
$$

Typical examples for symmetries θ

- reflection $t \rightarrow-t$

$$
\theta(f)(t)=f(-t)
$$

- left-right exchange between algebra and commutant for von Neumann algebras M

$$
\begin{gathered}
A_{+}:=M, \quad A_{-}:=M^{\prime} \\
\theta: M \rightarrow M^{\prime}, \quad a \mapsto \theta(a)=J a J \\
\tau(\theta(a) a)=\langle\Omega, J a J a \Omega\rangle=\left\langle J a^{*} \Omega, a \Omega\right\rangle=\left\langle\Delta^{1 / 2} a \Omega, a \Omega\right\rangle \geq 0
\end{gathered}
$$

Typical examples for symmetries θ

- reflection $t \rightarrow-t$

$$
\theta(f)(t)=f(-t)
$$

- left-right exchange between algebra and commutant for von Neumann algebras M

$$
\begin{gathered}
A_{+}:=M, \quad A_{-}:=M^{\prime} \\
\theta: M \rightarrow M^{\prime}, \quad a \mapsto \theta(a)=J a J \\
\tau(\theta(a) a)=\langle\Omega, J a J a \Omega\rangle=\left\langle J a^{*} \Omega, a \Omega\right\rangle=\left\langle\Delta^{1 / 2} a \Omega, a \Omega\right\rangle \geq 0
\end{gathered}
$$

- left-right exchange between two faces in bi-free setting

$$
\left(x_{i}, y_{i}\right)_{i \in I} \text { pairs of faces and } \quad \theta\left(x_{i}\right)=y_{i}
$$

Osterwalder-Schrader axioms for euclidian QFT

Axioms for Euclidean Green's Functions

Konrad Osterwalder * and Robert Schrader ${ }^{\star \star}$
Lyman Laboratory of Physics, Harvard University, Cambridge, Mass. USA

Received December 18, 1972

Abstract

We establish necessary and sufficient conditions for Euclidean Green's functions to define a unique Wightman field theory.

Contents

1 Introduction . 83
2. Test Functions and Distributions 85
3. The Axioms, Main Theorems 87
4. Theorem $\mathrm{E} \rightarrow \mathrm{R}$. 90
4.1. Construction of the Wightman Distributions 90
4.2. Lorentz Covariance and Spectrum Condition 94
4.3. Postivity . 94

relativistic/Minkowski QFT

Euclidean QFT

relativistic/Minkowski QFT

- Wightmann functions

Euclidean QFT

- Schwinger functions

relativistic/Minkowski QFT

- Wightmann functions
- $\psi(x, t)$

Euclidean QFT

- Schwinger functions
- $\tilde{\psi}(x, \tau)=\psi(x, t=i \tau)$

relativistic/Minkowski QFT

- Wightmann functions
- $\psi(x, t)$
- $\psi(x, t)=e^{i t H} \psi(x, 0) e^{-i t H}$

Euclidean QFT

- Schwinger functions
- $\tilde{\psi}(x, \tau)=\psi(x, t=i \tau)$
- $\tilde{\psi}(x, \tau)=e^{-\tau H} \psi(x, 0) e^{\tau H}$

relativistic/Minkowski QFT

- Wightmann functions
- $\psi(x, t)$
- $\psi(x, t)=e^{i t H} \psi(x, 0) e^{-i t H}$
- $\psi(x, t)^{*}=\psi(x, t)$

Euclidean QFT

- Schwinger functions
- $\tilde{\psi}(x, \tau)=\psi(x, t=i \tau)$
- $\tilde{\psi}(x, \tau)=e^{-\tau H} \psi(x, 0) e^{\tau H}$
- $\widetilde{\psi}(x, \tau)^{*}=e^{\tau H} \psi(x, 0) e^{-\tau H}=\widetilde{\psi}(x,-\tau)$

relativistic/Minkowski QFT

- Wightmann functions
- $\psi(x, t)$
- $\psi(x, t)=e^{i t H} \psi(x, 0) e^{-i t H}$
- $\psi(x, t)^{*}=\psi(x, t)$

Euclidean QFT

- Schwinger functions
- $\tilde{\psi}(x, \tau)=\psi(x, t=i \tau)$
- $\tilde{\psi}(x, \tau)=e^{-\tau H} \psi(x, 0) e^{\tau H}$
- $\widetilde{\psi}(x, \tau)^{*}=e^{\tau H} \psi(x, 0) e^{-\tau H}=\widetilde{\psi}(x,-\tau)$
- And thus, with $\theta(\widetilde{\psi})(x, \tau)=\widetilde{\psi}(x,-\tau)$,

$$
\tau[\theta(\tilde{\psi}) \tilde{\psi}]=\tau\left[\tilde{\psi}^{*} \tilde{\psi}\right] \geq 0
$$

Meaning of reflection positivity

$$
\mathcal{H}=L^{2}(\mathbb{R}, k), \quad\langle f, g\rangle=\iint \bar{f}(s) g(t) k(s, t) d s d t
$$

Meaning of reflection positivity

$$
\mathcal{H}=L^{2}(\mathbb{R}, k), \quad\langle f, g\rangle=\iint \bar{f}(s) g(t) k(s, t) d s d t
$$

positivity of inner product: $k(\cdot, \cdot)$ is positive definite kernel

Meaning of reflection positivity

$$
\begin{gathered}
\mathcal{H}=L^{2}(\mathbb{R}, k), \quad\langle f, g\rangle=\iint \bar{f}(s) g(t) k(s, t) d s d t \\
\theta: \mathcal{H} \rightarrow \mathcal{H} ; \quad \theta(f)(t)=f(-t) \\
\mathcal{H}_{+}:=\left\{f \in L^{2} \mid f(t)=0 \text { for all } t \in \mathbb{R}_{-}\right\} \equiv L^{2}\left(\mathbb{R}_{+}, k\right),
\end{gathered}
$$

Meaning of reflection positivity

$$
\begin{gathered}
\mathcal{H}=L^{2}(\mathbb{R}, k), \quad\langle f, g\rangle=\iint \bar{f}(s) g(t) k(s, t) d s d t \\
\theta: \mathcal{H} \rightarrow \mathcal{H} ; \quad \theta(f)(t)=f(-t) \\
\mathcal{H}_{+}:=L^{2}\left(\mathbb{R}_{+}, k\right), \quad \theta\left(\mathcal{H}_{+}\right)=\mathcal{H}_{-} \equiv L^{2}\left(\mathbb{R}_{-}, k\right)
\end{gathered}
$$

Meaning of reflection positivity

$$
\begin{aligned}
& \mathcal{H}=L^{2}(\mathbb{R}, k), \quad\langle f, g\rangle=\iint \bar{f}(s) g(t) k(s, t) d s d t \\
& \theta: \mathcal{H} \rightarrow \mathcal{H} ; \quad \theta(f)(t)=f(-t) \\
& \mathcal{H}_{+}:=L^{2}\left(\mathbb{R}_{+}, k\right), \quad \theta\left(\mathcal{H}_{+}\right)=\mathcal{H}_{-} \equiv L^{2}\left(\mathbb{R}_{-}, k\right) \\
& f \in \mathcal{H}_{+}: \quad\langle\theta(f), f\rangle=\int_{\mathbb{R}} \int_{\mathbb{R}} \overline{\theta(f)}(s) f(t) k(s, t) d s d t \\
&=\int_{\mathbb{R}_{+}} \int_{\mathbb{R}_{-}} \bar{f}(-s) f(t) k(s, t) d s d t \\
&=\int_{\mathbb{R}_{+}} \int_{\mathbb{R}_{+}} \bar{f}(s) f(t) k(-s, t) d s d t
\end{aligned}
$$

Meaning of reflection positivity

$$
\begin{gathered}
\mathcal{H}=L^{2}(\mathbb{R}, k), \quad\langle f, g\rangle=\iint \bar{f}(s) g(t) k(s, t) d s d t \\
\theta: \mathcal{H} \rightarrow \mathcal{H} ; \quad \theta(f)(t)=f(-t) \\
\mathcal{H}_{+}:=L^{2}\left(\mathbb{R}_{+}, k\right), \quad \theta\left(\mathcal{H}_{+}\right)=\mathcal{H}_{-} \equiv L^{2}\left(\mathbb{R}_{-}, k\right) \\
f \in \mathcal{H}_{+}: \quad\langle\theta(f), f\rangle=\int_{\mathbb{R}_{+}} \int_{\mathbb{R}_{+}} \bar{f}(s) f(t) k(-s, t) d s d t
\end{gathered}
$$

Meaning of reflection positivity

$$
\begin{gathered}
\mathcal{H}=L^{2}(\mathbb{R}, k), \quad\langle f, g\rangle=\iint \bar{f}(s) g(t) k(s, t) d s d t \\
\theta: \mathcal{H} \rightarrow \mathcal{H} ; \quad \theta(f)(t)=f(-t) \\
\mathcal{H}_{+}:=L^{2}\left(\mathbb{R}_{+}, k\right), \quad \theta\left(\mathcal{H}_{+}\right)=\mathcal{H}_{-} \equiv L^{2}\left(\mathbb{R}_{-}, k\right) \\
f \in \mathcal{H}_{+}: \quad\langle\theta(f), f\rangle=\int_{\mathbb{R}_{+}} \int_{\mathbb{R}_{+}} \bar{f}(s) f(t) k(-s, t) d s d t
\end{gathered}
$$

Reflection positive kernels (Jorgensen, Neeb, Olafson)
We have on $L^{2}\left(\mathbb{R}_{+}\right)$two positve definite kernels, given via k, namely

- $(s, t) \mapsto k(s, t)$
$(s, t) \mapsto k(t-s)$
- $(s, t) \mapsto k(-s, t) \quad$ or
$(s, t) \mapsto k(t+s)$

Consequences of reflection positivity

What can we get out of reflection positivity?

Consequences of reflection positivity

What can we get out of reflection positivity?

$$
\langle f, g\rangle_{\theta}:=\langle\theta(f), g\rangle \quad \text { for } f, g \in \mathcal{H}_{+}
$$

gives a new inner product on \mathcal{H}_{+}, and thus we have Cauchy-Schwartz also for this

$$
\langle f, g\rangle_{\theta}^{2} \leq\langle f, f\rangle_{\theta} \cdot\langle g, g\rangle_{\theta}
$$

Consequences of reflection positivity

What can we get out of reflection positivity?

$$
\langle f, g\rangle_{\theta}:=\langle\theta(f), g\rangle \quad \text { for } f, g \in \mathcal{H}_{+}
$$

gives a new inner product on \mathcal{H}_{+}, and thus we have Cauchy-Schwartz also for this

$$
\langle f, g\rangle_{\theta}^{2} \leq\langle f, f\rangle_{\theta} \cdot\langle g, g\rangle_{\theta}
$$

or in terms of the old inner product

$$
\langle\theta(f), g\rangle \leq \sqrt{\langle\theta(f), f\rangle \cdot\langle\theta(g), g\rangle} \leq \frac{1}{2}\{\langle\theta(f), f\rangle+\langle\theta(g), g\rangle\}
$$

Consequences of reflection positivity

What can we get out of reflection positivity?

$$
\langle f, g\rangle_{\theta}:=\langle\theta(f), g\rangle \quad \text { for } f, g \in \mathcal{H}_{+}
$$

gives a new inner product on \mathcal{H}_{+}, and thus we have Cauchy-Schwartz also for this

$$
\langle f, g\rangle_{\theta}^{2} \leq\langle f, f\rangle_{\theta} \cdot\langle g, g\rangle_{\theta}
$$

or in terms of the old inner product

$$
\langle\theta(f), g\rangle \leq \sqrt{\langle\theta(f), f\rangle \cdot\langle\theta(g), g\rangle} \leq \frac{1}{2}\{\langle\theta(f), f\rangle+\langle\theta(g), g\rangle\}
$$

and so

$$
\begin{aligned}
\langle\theta(f)+g, \theta(f)+g\rangle & =\langle\theta(f), \theta(f)\rangle+\langle g, g\rangle+2\langle\theta(f), g\rangle \\
& \leq\langle\theta(f), \theta(f)\rangle+\langle g, g\rangle+\langle\theta(f), f\rangle+\langle\theta(g), g\rangle\} \\
& =\frac{1}{2}\{\langle f+\theta(f), f+\theta(f)\rangle+\langle g+\theta(g), g+\theta(g)\rangle\}
\end{aligned}
$$

Consequences of reflection positivity

$$
\langle\theta(f)+g, \theta(f)+g\rangle=\frac{1}{2}\{\langle f+\theta(f), f+\theta(f)\rangle+\langle g+\theta(g), g+\theta(g)\rangle\}
$$

Consequences of reflection positivity

$$
\langle\theta(f)+g, \theta(f)+g\rangle=\frac{1}{2}\{\langle f+\theta(f), f+\theta(f)\rangle+\langle g+\theta(g), g+\theta(g)\rangle\}
$$

Say, we want to maximize

$$
\mathcal{E}(h)=\langle h, h\rangle=\iint \bar{h}(s) h(t) k(s, t) d s d t
$$

Consequences of reflection positivity

$$
\langle\theta(f)+g, \theta(f)+g\rangle=\frac{1}{2}\{\langle f+\theta(f), f+\theta(f)\rangle+\langle g+\theta(g), g+\theta(g)\rangle\}
$$

Say, we want to maximize

$$
\mathcal{E}(h)=\langle h, h\rangle=\iint \bar{h}(s) h(t) k(s, t) d s d t
$$

Write

$$
h=h_{-}+h_{+}, \quad \text { with } h_{+} \in L^{2}\left(\mathbb{R}_{+}\right) \text {and } h_{-} \in L^{2}\left(\mathbb{R}_{-}\right)
$$

then

$$
\mathcal{E}(h)=\mathcal{E}\left(h_{-}+h_{+}\right) \leq \frac{\mathcal{E}\left(\theta\left(h_{-}\right)+h_{-}\right)+\mathcal{E}\left(h_{+}+\theta\left(h_{+}\right)\right)}{2}
$$

Consequences of reflection positivity

$$
\begin{gathered}
\mathcal{E}(h)=\langle h, h\rangle=\iint \bar{h}(s) h(t) k(s, t) d s d t \\
\mathcal{E}(h)=\mathcal{E}\left(h_{-}+h_{+}\right) \leq \frac{\mathcal{E}\left(\theta\left(h_{-}\right)+h_{-}\right)+\mathcal{E}\left(h_{+}+\theta\left(h_{+}\right)\right)}{2}
\end{gathered}
$$

Consequences of reflection positivity

$$
\begin{gathered}
\mathcal{E}(h)=\langle h, h\rangle=\iint \bar{h}(s) h(t) k(s, t) d s d t \\
\mathcal{E}(h)=\mathcal{E}\left(h_{-}+h_{+}\right) \leq \frac{\mathcal{E}\left(\theta\left(h_{-}\right)+h_{-}\right)+\mathcal{E}\left(h_{+}+\theta\left(h_{+}\right)\right)}{2}
\end{gathered}
$$

Symmetric problem has symmetric solution
Thus, at least one of $h_{-}+\theta\left(h_{-}\right)$and $h_{+}+\theta\left(h_{+}\right)$is a better maximizer for \mathcal{E} than $h=h_{-}+h_{+}$. This means that the solution h to the maximization problem must be symmetric, i.e., $\theta(h)=h$.

Consequences of reflection positivity

$$
\begin{gathered}
\mathcal{E}(h)=\langle h, h\rangle=\iint \bar{h}(s) h(t) k(s, t) d s d t \\
\mathcal{E}(h)=\mathcal{E}\left(h_{-}+h_{+}\right) \leq \frac{\mathcal{E}\left(\theta\left(h_{-}\right)+h_{-}\right)+\mathcal{E}\left(h_{+}+\theta\left(h_{+}\right)\right)}{2}
\end{gathered}
$$

Symmetric problem has symmetric solution
Thus, at least one of $h_{-}+\theta\left(h_{-}\right)$and $h_{+}+\theta\left(h_{+}\right)$is a better maximizer for \mathcal{E} than $h=h_{-}+h_{+}$. This means that the solution h to the maximization problem must be symmetric, i.e., $\theta(h)=h$.

Existence of phase transitions in statistical physics (Fröhlich, Israel, Lieb, Simon)

- symmetry of solution for small temperatures by reflection positivity
- absence of such symmetry by high temperature expansion

Meaning of reflection positivity

Consider two commuting random variables x and y

$$
A=L^{\infty}(\mathbb{R} \times \mathbb{R})=L^{\infty}(\mathbb{R}) \otimes L^{\infty}(\mathbb{R})=\{f(x, y)\}
$$

$$
\begin{gathered}
\theta(f)(x, y)=\bar{f}(y, x) \\
A_{+}=L^{\infty}(\mathbb{R}) \otimes 1=\{f(x)\}, \quad A_{-}=1 \otimes L^{\infty}(\mathbb{R})=\{f(y)\}
\end{gathered}
$$

Meaning of reflection positivity

Consider two commuting random variables x and y

$$
\begin{aligned}
A=L^{\infty}(\mathbb{R} \times \mathbb{R}) & =L^{\infty}(\mathbb{R}) \otimes L^{\infty}(\mathbb{R})=\{f(x, y)\} \\
\tau[f(x, y] & =\iint f(s, t) k(s, t) d s d t
\end{aligned}
$$

$$
\begin{gathered}
\theta(f)(x, y)=\bar{f}(y, x) \\
A_{+}=L^{\infty}(\mathbb{R}) \otimes 1=\{f(x)\}, \quad A_{-}=1 \otimes L^{\infty}(\mathbb{R})=\{f(y)\}
\end{gathered}
$$

Meaning of reflection positivity

Consider two commuting random variables x and y
Positivity: $k(\cdot, \cdot)$ positive density

$$
\begin{aligned}
A=L^{\infty}(\mathbb{R} \times \mathbb{R}) & =L^{\infty}(\mathbb{R}) \otimes L^{\infty}(\mathbb{R})=\{f(x, y)\} \\
\tau[f(x, y] & =\iint f(s, t) k(s, t) d s d t
\end{aligned}
$$

$$
\begin{gathered}
\theta(f)(x, y)=\bar{f}(y, x) \\
A_{+}=L^{\infty}(\mathbb{R}) \otimes 1=\{f(x)\}, \quad A_{-}=1 \otimes L^{\infty}(\mathbb{R})=\{f(y)\}
\end{gathered}
$$

Meaning of reflection positivity

Consider two commuting random variables x and y
Positivity: $k(\cdot, \cdot)$ positive density

$$
\begin{aligned}
A=L^{\infty}(\mathbb{R} \times \mathbb{R}) & =L^{\infty}(\mathbb{R}) \otimes L^{\infty}(\mathbb{R})=\{f(x, y)\} \\
\tau[f(x, y] & =\iint f(s, t) k(s, t) d s d t
\end{aligned}
$$

$$
\begin{gathered}
\theta(f)(x, y)=\bar{f}(y, x) \\
A_{+}=L^{\infty}(\mathbb{R}) \otimes 1=\{f(x)\}, \quad A_{-}=1 \otimes L^{\infty}(\mathbb{R})=\{f(y)\} \\
\tau[\theta(f) f]=\tau[\bar{f}(y) f(x)]=\iint \bar{f}(s) f(t) k(s, t) d s d t \geq 0, \quad f=f(x) \in A_{+}
\end{gathered}
$$

Meaning of reflection positivity

Consider two commuting random variables x and y
Positivity: $k(\cdot, \cdot)$ positive density

$$
\begin{aligned}
A=L^{\infty}(\mathbb{R} \times \mathbb{R}) & =L^{\infty}(\mathbb{R}) \otimes L^{\infty}(\mathbb{R})=\{f(x, y)\} \\
\tau[f(x, y] & =\iint f(s, t) k(s, t) d s d t
\end{aligned}
$$

Reflection positivity: $k(\cdot, \cdot)$ is positive kernel

$$
\begin{gathered}
\theta(f)(x, y)=\bar{f}(y, x) \\
A_{+}=L^{\infty}(\mathbb{R}) \otimes 1=\{f(x)\}, \quad A_{-}=1 \otimes L^{\infty}(\mathbb{R})=\{f(y)\} \\
\tau[\theta(f) f]=\tau[\bar{f}(y) f(x)]=\iint \bar{f}(s) f(t) k(s, t) d s d t \geq 0, \quad f=f(x) \in A_{+}
\end{gathered}
$$

Meaning of reflection positivity

Consider two commuting random variables x and y.
Reflection positivity means then:

$$
\mathbb{E}[f(x) \bar{f}(y)] \geq 0 \quad \text { for all } f
$$

Meaning of reflection positivity

Consider two commuting random variables x and y.
Reflection positivity means then:

$$
\mathbb{E}[f(x) \bar{f}(y)] \geq 0 \quad \text { for all } f
$$

This is satisfied if x and y are i.i.d. But when else?

Meaning of reflection positivity

Consider two commuting random variables x and y.
Reflection positivity means then:

$$
\mathbb{E}[f(x) \bar{f}(y)] \geq 0 \quad \text { for all } f
$$

This is satisfied if x and y are i.i.d. But when else?

Does this have any probabilistic meaning?

Bi-free probability

Consider pairs of faces: $\left(x_{i}, y_{i}\right)$ for $i \in I$

$$
A=\operatorname{alg}\left(x_{i}, y_{i} ; i \in I\right), \quad A_{i}:=\operatorname{alg}\left(x_{i}, y_{i}\right)
$$

[x_{i} and y_{i} don't need to commute; if they do, we call it bipartite]

Bi-free probability

Consider pairs of faces: $\left(x_{i}, y_{i}\right)$ for $i \in I$

$$
A=\operatorname{alg}\left(x_{i}, y_{i} ; i \in I\right), \quad A_{i}:=\operatorname{alg}\left(x_{i}, y_{i}\right)
$$

[x_{i} and y_{i} don't need to commute; if they do, we call it bipartite]

Bi-freeness $=$ rule to calculate τ on A out of all $\left.\tau\right|_{A_{i}}$

Bi-free probability

Consider pairs of faces:

$$
\left(x_{i}, y_{i}\right) \text { for } i \in I
$$

$$
A=\operatorname{alg}\left(x_{i}, y_{i} ; i \in I\right), \quad A_{i}:=\operatorname{alg}\left(x_{i}, y_{i}\right)
$$

[x_{i} and y_{i} don't need to commute; if they do, we call it bipartite]

Bi-freeness $=$ rule to calculate τ on A out of all $\left.\tau\right|_{A_{i}}$

- it is defined via realizing all x_{i} as left operators and all y_{i} as right operators acting on a free product Hilbert space

Bi-free probability

Consider pairs of faces: $\quad\left(x_{i}, y_{i}\right)$ for $i \in I$

$$
A=\operatorname{alg}\left(x_{i}, y_{i} ; i \in I\right), \quad A_{i}:=\operatorname{alg}\left(x_{i}, y_{i}\right)
$$

[x_{i} and y_{i} don't need to commute; if they do, we call it bipartite]
Bi-freeness $=$ rule to calculate τ on A out of all $\left.\tau\right|_{A_{i}}$

- it is defined via realizing all x_{i} as left operators and all y_{i} as right operators acting on a free product Hilbert space
- in order to calculate τ for any product of the left and right variables do the following
move all left variables to the left, all right variables to the right invert the order of the right variables decompose now into the individual moments for each i according to the usual freeness rule bring the left and right variables in each moment back into their original order

Bi-free probability

In particular one has for bi-free situation

- all left variables are free
- all right variables are free
- the left and the right variables corresponding to different indices are independent

Bi-free probability

In particular one has for bi-free situation

- all left variables are free
- all right variables are free
- the left and the right variables corresponding to different indices are independent
$\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ bi-free means
- x_{1}, x_{2} are free
- y_{1}, y_{2} are free
- x_{1} and y_{2} are independent
- x_{2} and y_{1} are independent
- the relation between x_{1} and y_{1} can be arbitrarily prescribed
- the relation between x_{2} and y_{2} can be arbitrarily prescribed

Bi-free probability: positivity questions

Positivity of the state

- if all $\left.\tau\right|_{A_{i}}$ are positive, then τ on the bi-free product A is positive

Bi-free probability: positivity questions

Positivity of the state

- if all $\left.\tau\right|_{A_{i}}$ are positive, then τ on the bi-free product A is positive
- this follows directly by definition, since everything is realized on Hilbert spaces

Bi-free probability: positivity questions

Positivity of the state

- if all $\left.\tau\right|_{A_{i}}$ are positive, then τ on the bi-free product A is positive
- this follows directly by definition, since everything is realized on Hilbert spaces
- but: do we have a direct combinatorial proof for this???

Bi-free probability: positivity questions

Positivity of the state

- if all $\left.\tau\right|_{A_{i}}$ are positive, then τ on the bi-free product A is positive
- this follows directly by definition, since everything is realized on Hilbert spaces
- but: do we have a direct combinatorial proof for this???

Reflection positivity for the left-right exchange $\theta\left(x_{i}\right)=y_{i}$

Bi-free probability: positivity questions

Positivity of the state

- if all $\left.\tau\right|_{A_{i}}$ are positive, then τ on the bi-free product A is positive
- this follows directly by definition, since everything is realized on Hilbert spaces
- but: do we have a direct combinatorial proof for this???

Reflection positivity for the left-right exchange $\theta\left(x_{i}\right)=y_{i}$

- Question: If all $\left.\theta\right|_{\left(x_{i}, y_{i}\right)}$ are reflection positive, is this then also true for θ on the bi-free product?

Bi-free probability: positivity questions

Positivity of the state

- if all $\left.\tau\right|_{A_{i}}$ are positive, then τ on the bi-free product A is positive
- this follows directly by definition, since everything is realized on Hilbert spaces
- but: do we have a direct combinatorial proof for this???

Reflection positivity for the left-right exchange $\theta\left(x_{i}\right)=y_{i}$

- Question: If all $\left.\theta\right|_{\left(x_{i}, y_{i}\right)}$ are reflection positive, is this then also true for θ on the bi-free product?
- Observation: This is true!

Bi-free probability: positivity questions

Positivity of the state

- if all $\left.\tau\right|_{A_{i}}$ are positive, then τ on the bi-free product A is positive
- this follows directly by definition, since everything is realized on Hilbert spaces
- but: do we have a direct combinatorial proof for this???

Reflection positivity for the left-right exchange $\theta\left(x_{i}\right)=y_{i}$

- Question: If all $\left.\theta\right|_{\left(x_{i}, y_{i}\right)}$ are reflection positive, is this then also true for θ on the bi-free product?
- Observation: This is true!
- Proof: This is just the fact that the Hadamard product of matrices preserves positive definiteness

Example of calculation of a positive moment

$$
\tau\left[\left(x_{2} y_{2} x_{1}\right)^{*}\left(x_{2} y_{2} x_{1}\right)\right]=\tau\left[x_{1} y_{2} x_{2} x_{2} y_{2} x_{1}\right]
$$

Example of calculation of a positive moment

$$
\begin{gathered}
\tau\left[\left(x_{2} y_{2} x_{1}\right)^{*}\left(x_{2} y_{2} x_{1}\right)\right]=\tau\left[x_{1} y_{2} x_{2} x_{2} y_{2} x_{1}\right] \\
\rightarrow \varphi\left(x_{1} x_{2} x_{2} x_{1} y_{2} y_{2}\right)=\varphi\left(x_{1}\right) \varphi\left(x_{1}\right) \varphi\left(x_{2} x_{2} y_{2} y_{2}\right)+\varphi\left(x_{1} x_{1}\right) \varphi\left(x_{2} x_{2}\right) \varphi\left(y_{2} y_{2}\right) \\
-\varphi\left(x_{1}\right) \varphi\left(x_{2} x_{2}\right) \varphi\left(x_{1}\right) \varphi\left(y_{2} y_{2}\right) \\
\rightarrow \tau\left[x_{1}\right] \tau\left[x_{1}\right] \tau\left[y_{2} x_{2} x_{2} y_{2}\right]+\tau\left[x_{1} x_{1}\right] \tau\left[x_{2} x_{2}\right] \tau\left[y_{2} y_{2}\right] \\
-\tau\left[x_{1}\right] \tau\left[x_{2} x_{2}\right] \tau\left[x_{1}\right] \tau\left[y_{2} y_{2}\right]
\end{gathered}
$$

Example of calculation of a positive moment

$$
\left.\begin{array}{c}
\tau\left[\left(x_{2} y_{2} x_{1}\right)^{*}\left(x_{2} y_{2} x_{1}\right)\right]=\tau\left[x_{1} y_{2} x_{2} x_{2} y_{2} x_{1}\right] \\
\rightarrow \varphi\left(x_{1} x_{2} x_{2} x_{1} y_{2} y_{2}\right)=\varphi\left(x_{1}\right) \varphi\left(x_{1}\right) \varphi\left(x_{2} x_{2} y_{2} y_{2}\right)+\varphi\left(x_{1} x_{1}\right) \varphi\left(x_{2} x_{2}\right) \varphi\left(y_{2} y_{2}\right) \\
\\
-\varphi\left(x_{1}\right) \varphi\left(x_{2} x_{2}\right) \varphi\left(x_{1}\right) \varphi\left(y_{2} y_{2}\right) \\
\rightarrow \\
\tau\left[x_{1}\right] \tau\left[x_{1}\right] \tau\left[y_{2} x_{2} x_{2} y_{2}\right]+\tau\left[x_{1} x_{1}\right] \tau\left[x_{2} x_{2}\right] \tau\left[y_{2} y_{2}\right] \\
\\
-\tau\left[x_{1}\right] \tau\left[x_{2} x_{2}\right] \tau\left[x_{1}\right] \tau\left[y_{2} y_{2}\right]
\end{array}\right\} \begin{gathered}
\tau\left[\left(x_{2} y_{2} x_{1}\right)^{*}\left(x_{2} y_{2} x_{1}\right)\right]=\tau\left[x_{1}\right] \tau\left[x_{1}\right] \tau\left[y_{2} x_{2} x_{2} y_{2}\right]+\tau\left[x_{1} x_{1}\right] \tau\left[x_{2} x_{2}\right] \tau\left[y_{2} y_{2}\right] \\
\quad-\tau\left[x_{1}\right] \tau\left[x_{2} x_{2}\right] \tau\left[x_{1}\right] \tau\left[y_{2} y_{2}\right] \\
=\tau\left[x_{1}\right]^{2} \tau\left[y_{2} x_{2} x_{2} y_{2}\right]+\left(\tau\left[x_{1} x_{1}\right]-\tau\left[x_{1}\right]^{2}\right) \tau\left[x_{2} x_{2}\right] \tau\left[y_{2} y_{2}\right]
\end{gathered}
$$

Example of calculation of a positive moment

$$
\begin{gathered}
\tau\left[\left(x_{2} y_{2} x_{1}\right)^{*}\left(x_{2} y_{2} x_{1}\right)\right]=\tau\left[x_{1} y_{2} x_{2} x_{2} y_{2} x_{1}\right] \\
\tau\left[\left(x_{2} y_{2} x_{1}\right)^{*}\left(x_{2} y_{2} x_{1}\right)\right]=\tau\left[x_{1}\right] \tau\left[x_{1}\right] \tau\left[y_{2} x_{2} x_{2} y_{2}\right]+\tau\left[x_{1} x_{1}\right] \tau\left[x_{2} x_{2}\right] \tau\left[y_{2} y_{2}\right] \\
-\tau\left[x_{1}\right] \tau\left[x_{2} x_{2}\right] \tau\left[x_{1}\right] \tau\left[y_{2} y_{2}\right] \\
=\tau\left[x_{1}\right]^{2} \tau\left[y_{2} x_{2} x_{2} y_{2}\right]+\left(\tau\left[x_{1} x_{1}\right]-\tau\left[x_{1}\right]^{2}\right) \tau\left[x_{2} x_{2}\right] \tau\left[y_{2} y_{2}\right]
\end{gathered}
$$

Example of calculation of a positive moment

$$
\begin{gathered}
\tau\left[\left(x_{2} y_{2} x_{1}\right)^{*}\left(x_{2} y_{2} x_{1}\right)\right]=\tau\left[x_{1} y_{2} x_{2} x_{2} y_{2} x_{1}\right] \\
\tau\left[\left(x_{2} y_{2} x_{1}\right)^{*}\left(x_{2} y_{2} x_{1}\right)\right]=\tau\left[x_{1}\right] \tau\left[x_{1}\right] \tau\left[y_{2} x_{2} x_{2} y_{2}\right]+\tau\left[x_{1} x_{1}\right] \tau\left[x_{2} x_{2}\right] \tau\left[y_{2} y_{2}\right] \\
-\tau\left[x_{1}\right] \tau\left[x_{2} x_{2}\right] \tau\left[x_{1}\right] \tau\left[y_{2} y_{2}\right] \\
=\tau\left[x_{1}\right]^{2} \tau\left[y_{2} x_{2} x_{2} y_{2}\right]+(\underbrace{\tau\left[x_{1} x_{1}\right]-\tau\left[x_{1}\right]^{2}}_{\geq 0}) \tau\left[x_{2} x_{2}\right] \tau\left[y_{2} y_{2}\right]
\end{gathered}
$$

Preservation of positivity

- if τ is positive on $\left(x_{1}, y_{1}\right)$

Example of calculation of a positive moment

$$
\begin{gathered}
\tau\left[\left(x_{2} y_{2} x_{1}\right)^{*}\left(x_{2} y_{2} x_{1}\right)\right]=\tau\left[x_{1} y_{2} x_{2} x_{2} y_{2} x_{1}\right] \\
\tau\left[\left(x_{2} y_{2} x_{1}\right)^{*}\left(x_{2} y_{2} x_{1}\right)\right]=\tau\left[x_{1}\right] \tau\left[x_{1}\right] \tau\left[y_{2} x_{2} x_{2} y_{2}\right]+\tau\left[x_{1} x_{1}\right] \tau\left[x_{2} x_{2}\right] \tau\left[y_{2} y_{2}\right] \\
-\tau\left[x_{1}\right] \tau\left[x_{2} x_{2}\right] \tau\left[x_{1}\right] \tau\left[y_{2} y_{2}\right] \\
=\tau\left[x_{1}\right]^{2} \underbrace{\tau\left[y_{2} x_{2} x_{2} y_{2}\right]}_{\geq 0}+(\underbrace{\tau\left[x_{1} x_{1}\right]-\tau\left[x_{1}\right]^{2}}_{\geq 0}) \underbrace{\tau\left[x_{2} x_{2}\right]}_{\geq 0} \underbrace{\tau\left[y_{2} y_{2}\right]}_{\geq 0}
\end{gathered}
$$

Preservation of positivity

- if τ is positive on $\left(x_{1}, y_{1}\right)$
- and if τ is positive on $\left(x_{2}, y_{2}\right)$

Example of calculation of a positive moment

$$
\begin{gathered}
\tau\left[\left(x_{2} y_{2} x_{1}\right)^{*}\left(x_{2} y_{2} x_{1}\right)\right]=\tau\left[x_{1} y_{2} x_{2} x_{2} y_{2} x_{1}\right] \\
\tau\left[\left(x_{2} y_{2} x_{1}\right)^{*}\left(x_{2} y_{2} x_{1}\right)\right]=\tau\left[x_{1}\right] \tau\left[x_{1}\right] \tau\left[y_{2} x_{2} x_{2} y_{2}\right]+\tau\left[x_{1} x_{1}\right] \tau\left[x_{2} x_{2}\right] \tau\left[y_{2} y_{2}\right] \\
-\tau\left[x_{1}\right] \tau\left[x_{2} x_{2}\right] \tau\left[x_{1}\right] \tau\left[y_{2} y_{2}\right] \\
=\tau\left[x_{1}\right]^{2} \underbrace{\tau\left[y_{2} x_{2} x_{2} y_{2}\right]}_{\geq 0}+(\underbrace{\tau\left[x_{1} x_{1}\right]-\tau\left[x_{1}\right]^{2}}_{\geq 0}) \underbrace{\tau\left[x_{2} x_{2}\right]}_{\geq 0} \underbrace{\tau\left[y_{2} y_{2}\right]}_{\geq 0} \\
\geq 0
\end{gathered}
$$

Preservation of positivity

- if τ is positive on $\left(x_{1}, y_{1}\right)$
- and if τ is positive on $\left(x_{2}, y_{2}\right)$
- then the bi-free product is also positive

Example of calculation of reflection positive moment

$$
\tau\left[\theta\left(x_{1} x_{2}\right) x_{1} x_{2}\right]=\tau\left[y_{1} y_{2} x_{1} x_{2}\right]
$$

Example of calculation of reflection positive moment

$$
\begin{gathered}
\tau\left[\theta\left(x_{1} x_{2}\right) x_{1} x_{2}\right]=\tau\left[y_{1} y_{2} x_{1} x_{2}\right] \\
\rightarrow \varphi\left(x_{1} x_{2} y_{2} y_{1}\right)=\varphi\left(x_{1} y_{1}\right) \varphi\left(x_{2} y_{2}\right) \rightarrow \tau\left[y_{1} x_{1}\right] \tau\left[y_{2} x_{2}\right]
\end{gathered}
$$

Example of calculation of reflection positive moment

$$
\begin{gathered}
\tau\left[\theta\left(x_{1} x_{2}\right) x_{1} x_{2}\right]=\tau\left[y_{1} y_{2} x_{1} x_{2}\right] \\
\rightarrow \varphi\left(x_{1} x_{2} y_{2} y_{1}\right)=\varphi\left(x_{1} y_{1}\right) \varphi\left(x_{2} y_{2}\right) \rightarrow \tau\left[y_{1} x_{1}\right] \tau\left[y_{2} x_{2}\right] \\
\tau\left[\theta\left(x_{1} x_{2}\right) x_{1} x_{2}\right]=\tau\left[y_{1} y_{2} x_{1} x_{2}\right]=\tau\left[y_{1} x_{1}\right] \tau\left[y_{2} x_{2}\right]=\tau\left[\theta\left(x_{1}\right) x_{1}\right] \cdot \tau\left[\theta\left(x_{2}\right) x_{2}\right]
\end{gathered}
$$

Example of calculation of reflection positive moment

$$
\begin{gathered}
\tau\left[\theta\left(x_{1} x_{2}\right) x_{1} x_{2}\right]=\tau\left[y_{1} y_{2} x_{1} x_{2}\right] \\
\tau\left[\theta\left(x_{1} x_{2}\right) x_{1} x_{2}\right]=\tau\left[\theta\left(x_{1}\right) x_{1}\right] \cdot \tau\left[\theta\left(x_{2}\right) x_{2}\right]
\end{gathered}
$$

Example of calculation of reflection positive moment

$$
\begin{gathered}
\tau\left[\theta\left(x_{1} x_{2}\right) x_{1} x_{2}\right]=\tau\left[y_{1} y_{2} x_{1} x_{2}\right] \\
\tau\left[\theta\left(x_{1} x_{2}\right) x_{1} x_{2}\right]=\underbrace{\tau\left[\theta\left(x_{1}\right) x_{1}\right]}_{\geq 0} \cdot \tau\left[\theta\left(x_{2}\right) x_{2}\right]
\end{gathered}
$$

Preservation of reflection positivity

- if $\left(x_{1}, y_{1}\right)$ is reflection positive

Example of calculation of reflection positive moment

$$
\begin{gathered}
\tau\left[\theta\left(x_{1} x_{2}\right) x_{1} x_{2}\right]=\tau\left[y_{1} y_{2} x_{1} x_{2}\right] \\
\tau\left[\theta\left(x_{1} x_{2}\right) x_{1} x_{2}\right]=\underbrace{\tau\left[\theta\left(x_{1}\right) x_{1}\right]}_{\geq 0} \cdot \underbrace{\tau\left[\theta\left(x_{2}\right) x_{2}\right]}_{\geq 0}
\end{gathered}
$$

Preservation of reflection positivity

- if $\left(x_{1}, y_{1}\right)$ is reflection positive
- and if $\left(x_{2}, y_{2}\right)$ is reflection positive

Example of calculation of reflection positive moment

$$
\begin{gathered}
\tau\left[\theta\left(x_{1} x_{2}\right) x_{1} x_{2}\right]=\tau\left[y_{1} y_{2} x_{1} x_{2}\right] \\
\underbrace{\tau\left[\theta\left(x_{1} x_{2}\right) x_{1} x_{2}\right]}=\underbrace{\tau\left[\theta\left(x_{1}\right) x_{1}\right]} \cdot \underbrace{\tau\left[\theta\left(x_{2}\right) x_{2}\right]} \\
\geq 0
\end{gathered}
$$

Preservation of reflection positivity

- if $\left(x_{1}, y_{1}\right)$ is reflection positive
- and if $\left(x_{2}, y_{2}\right)$ is reflection positive
- then their bi-free product is also reflection positive

Summary

Summary

- reflection positivity is a nice and interesting property

Summary

- reflection positivity is a nice and interesting property
- bi-freeness seems to preserve this property

Summary

- reflection positivity is a nice and interesting property
- bi-freeness seems to preserve this property
- but it this good for anything???

Summary

- reflection positivity is a nice and interesting property
- bi-freeness seems to preserve this property
- but it this good for anything???

Thank you for your attention!

