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The Jiang-Su algebra

Z is a simple, separable, unital, C*-algebra such that

K0(Z) ∼= Z, K1(Z) ∼= 0, T (Z) = {∗}

It can be expressed as an inductive limit of dimension drop C*-algebras

Zn−1,n = {f ∈ C ([0, 1],Mn−1⊗Mn) : f (0) ∈ Mn−1⊗1n, f (1) ∈ 1n−1⊗Mn}.

Selfabsortion:
Z ∼= Z ⊗ Z

In fact,
Z ∼= Z ⊗ Z ⊗Z ⊗ · · ·

In fact, Z is strongly self-absorbing, i.e., there exists an isomorphism
ϕ : Z → Z ⊗Z that is a.u. to the embedding Z ∋ z 7→ z ⊗ 1 ∈ Z ⊗ Z.
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Strict comparison of positive elements by traces

In my opinion, the most important general structure question
concerning simple C*-algebras is the extent to which the Murray-
von Neumann comparison theory for factors is valid in arbitrary
simple C*-algebras. (B. Blackadar)

Given a tracial state τ ∈ T (A) and a ∈ A+, define

dτ (a) = lim
n→∞

τ(a
1
n ) = τ(pa).

Cuntz comparison of positive elements: Given positive elements a and b,

a ≾ b if dnbd∗
n → a for some (dn)

∞
n=1.

A simple unital C*-algebra A has strict comparison of positive elements
by traces if

dτ (a) < dτ (b) for all τ ∈ T (A) ⇒ a ≾ b,

for all positive a, b ∈
⋃∞

n=1 Mn(A).
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Z-stability and strict comparison

A is called Z-stable if A ∼= A⊗Z.

Theorem (Rordam)
If A is Z-stable, then it has strict comparison of positive elements by
2-quasitraces (by traces, if A is exact).

Theorem (Villadsen)
There are simple, separable, unital, nuclear C*-algeras without strict
comparison.

Conjecture (Toms-Winter)
A simple, separable, nuclear C*-algebra with strict comparison is
Z-stable.
Currently, this is known to hold if ∂eT (A) is closed and has finite
covering dimension (in particular, in the unique trace case).
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Freeness and strict comparison

Let A be a unital C*-algebra. Let τ ∈ T (A) be a faithful tracial state.

Lemma
If p, q ∈ A are freely independent projections such that τ(p) < τ(q), then
upu∗ ≤ q for some unitary u.

Proof.
Calculation of distribution of p(1 − q)p by Voiculescu; similar result by
Anderson-Blackadar-Haagerup; Dykema.

The above lemma extends to positive elements:

Lemma
If a, b ∈ A are freely independent positive elements such that
dτ (a) < dτ (b), then a ≾ b.
Proof: Reduces to the case of projections.
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Strict comparison in C ∗
r (F∞)

Theorem (Rordam)
C∗
r (F∞) has strict comparison of positive elements.

Similar results on strict comparison of projection obtained by Dykema
and Rordam.
Note: C∗

r (F∞) is tensorially prime.

Proof.
(Sketch) Let a, b ∈ C∗

r (F∞) be positive and such that dτ (a) < dτ (b).
After perturbations, reduce to the case that a, b are finite linear
combinations of {uw : w ∈ F∞}.
Find a symbol g ∈ F∞ never used in these linear combinations. Then a
and ugbu

∗
g are freely independent. Apply lemma relating freeness with

strict comparison.
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Let (A, τ) be a C*-algebra with a faithful tracial state. Let U be a free
ultrafilter on N. Denote by AU the ultrapower of A and by τU the
extension of τ to AU .

Suppose we can find a Haar u ∈ AU such that
• A and C∗(u) are freely independent.
• τU is faithful on C∗(A, u).

Then we have strict comparison: If a, b ∈ A+ are such that
dτ (a) < dτ (b), then

dτU (a) < dτU (ubu
∗)

and a, ubu∗ are freely independent. By the lemma relating freeness to
strict comparison, a ≾ ubu∗ ∼ b in AU . Hence a ≾ b in A.

Theorem (Popa)
If M is a separable II1 factor and U a free ultrafilter on N then there
exists u ∈ MU freely independent from M.
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Approximately split injective embeddings

A unital embedding θ : A → B is called approximately split injective
(a.s.i.) if for some free ultrafilter U there exists σ : B → AU such that σθ
agrees with the diagonal embedding of A in AU :

A
ι

//

θ ��

AU

B

σ

>>

This is equivalent to asking that θ be positively existential, i.e., that for
any quantifier-free positive formula ϕ(x̄ , ȳ) in the language of unital
C*-algebras and tuple ā in A,

inf
ȳ
ϕ(ā, ȳ)A = inf

ȳ
ϕ(θ(ā), ȳ)B .



Selfless C*-algebras

Let (A, τ) be a C*-probability space, with τ faithful tracial state.

Definition
(A, τ) is called selfless if the embedding of (A, τ) into the first factor of
(A, τ) ∗ (A, τ) ∗ · · · is a.s.i.

A
ι

//

θ $$

AU

A ∗ A ∗ · · ·
σ

99

Lemma: If A ̸= C, then ∗∞i=1A contains a Haar unitary.

Theorem
Let (A, τ) be a C*-probability space, with τ a faithful trace and A ̸= C.
TFAE:

1 (A, τ) is selfless.
2 The embedding of (A, τ) in (A, τ) ∗ (C (T), λ) is a.s.i.
3 The embedding of (A, τ) in (A, τ) ∗ (C∗

r (F∞), ρ) is a.s.i.



Properties

Theorem
Let (A, τ) be selfless, with A ̸= C. Then

1 A is an infinite dimensional simple C*-algebra of stable rank one,
2 τ is the unique tracial state, and unique 2-quasitracial state, of A,
3 A has the uniform Dixmier property and strict comparison of positive

elements with respect to τ .

Proof.
These properties are true for A ∗ A ∗ · · · , and get passed on to A via the
factorization of A ↪→ AU through A ∗ A ∗ · · · .



Permanence properties

Theorem
Let (Ai )i∈I be an upward directed family of subalgebras of A =

⋃
i∈I Ai .

If (Ai , τ |Ai ) is selfless for all i , then (A, τ) is selfless.

Theorem
Let (A, τ) be selfless, with A ̸= C. If A′ is a unital C*-algebra stably
isomorphic to A, then (A′, τ ′) is again selfless, where τ ′ denotes the
unique tracial state on A′.
Note: A′ ∼= pMn(A)p, with p projection.

Theorem
Let (Ai , τi )i∈I , with I an infinite set, be C*-probability spaces with τi a
faithful trace for all i . Suppose that, for infinitely many i , τi vanishes on
some unitary of Ai . Then (A, τ) = ∗i∈I (Ai , τi ) is selfless.
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Examples

Theorem
The following C*-algebras are selfless:

1 C∗
r (F∞)

2 Z
3 UHF C*-algebras.

Proof.
(2): Ozawa showed that C∗

r (F∞) ↪→ ZU (building on C∗
r (F∞) being

MF).
On the other hand Z ↪→ C∗

r (F∞) (using classification by the Cuntz
semigroup, and that C∗

r (F∞) has stable rank one and strict comparison),
Combining these results

Z ∗ C (T) ↪→ ZU .

But all embeddings Z ↪→ ZU are unitarily equivalent.
(3) UHF case: M2∞ = limM2n(Z).
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Eigenfree C*-probability spaces

Definition (Dykema, Rordam)
A C*-probability space (A, τ) is eigenfree if there exist an endomorphism
θ : A → A and a Haar unitary u ∈ A such that θ(A) and C∗(u) are freely
independent and τθ = τ .
Example: C∗

r (F2) is eigenfree.

Theorem
Let (A, τ) be a C*-probability space, with τ a faithful trace. Suppose
that (A, τ) is eigenfree relative to an endomorphism θ : A → A. Let B be
the inductive limit of the stationary system A

θ→ A and τ̄ the trace on B,
projective limit of the trace τ . Then (B, τ̄) is selfless.
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Remarks, questions

Question
How prevalent is selflessness?

Question
Is C∗

r (F2) selfless?
What this entails: Let F2 = ⟨a, b⟩ and F3 = ⟨a, b, c⟩. Then we seek a
Haar unitary u ∈ C∗

r (F2)
U such that a 7→ a, b → b, and c 7→ u extends

to an isomorphism C∗
r (F3) ∼= C∗(a, b, u).

Question
Does C∗

r (F2) have strict comparison?
There are many known structural properties of C*-algebras with strict
comparison that we cannot presently verify for C∗

r (F2).

Question
Is any trace zero element in C∗

r (F2) a sum of at most 3 (or any other
bound) commutators?
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Remarks, questions

Question
If (A, τ) is selfless and (B, ρ) a C*-probability space with ρ a faithful
trace, is (A ∗ B, τ ∗ ρ) selfless?
Say u ∈ AU is a Haar unitary such that C∗(A, u) ∼= A ∗ C (T). Is (τ ∗ ρ)U
faithful on C∗(A ∗ B, u) ⊆ (A ∗ B)U?

Definition
Let (A, ρ) be a C*-probability space, where ρ induces a faithful GNS
representation. Set (B, ρ̄) = ∗∞i=1(A, ρ). We call (A, ρ) selfless if for the
embedding θ : (A, ρ) → (B, ρ̄) into the first factor there exists an
ultrafilter U and a homomorphism σ : B → AU such that ρUσ = ρ̄ and
σθ agrees with the diagonal embedding of A in AU .
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Thank you!


